Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1979 Sep;100(3):551-61.
doi: 10.1002/jcp.1041000317.

Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells

Comparative Study

Effects of low electrolyte media on salt loss and hemolysis of mammalian red blood cells

R B Zeidler et al. J Cell Physiol. 1979 Sep.

Abstract

Cation loss and hemolysis of various mammalian red cells suspended in isotonic non-electrolyte media were investigated. Sucrose buffered with 10 mM Tris-Hepes, pH 7.4 was used as the non-permeable non-electrolyte. Mammals from which the red cells were derived include the human, guinea pig, rat, rabbit, newborn calf, newborn piglet and pig, all of which contain K as the predominant cation species (HK type) and the dog, cat, sheep and cow, all of which possess Na as the predominant cation species (LK type). Of HK cells, a rapid efflux of K takes place from humans, rats and guinea pigs. Of LK type cells, the dog and cat exhibit an augmented membrane permeability to Na. The governing factors which influence cation permeability are the change in pH, temperature, and ionic strength. In response to increase in pH, the red cells of humans, dogs and cats become more permeable to cations, whereas the red cells of rat and rabbit are unaffected. In response to increase in temperature, HK type cells exhibit augmented K efflux, while the Na loss from the dog and cat cells manifest a well-defined maximum at near 37 degrees C. In all cases, a small substitution of sucrose by an equal number of osmoles of salts results in a dramatic decrease in cation loss. By contrast, the red cells of the rabbit, newborn calf, adult cow, newborn piglet, adult pig and sheep display no discernible increase in ion-permeability under the conditions alluded to above. In some species including the newborn calf, dog, and cat, an extensive hemolysis occurs usually within an hour in isotonic buffered sucrose solution. The osmolarity of sucrose solution affects these cells differently in that as the osmolarity increases from 200--500 mM, hemolytic rates of the calf and dog reach a saturation near 300 mM sucrose, whereas the hemolytic rate of the cat decreases progressively. Common features pertaining to this hemolysis are (1) the intracellular alkalinization process; and (2) the diminution of the cell volume which take place prior to and onset of hemolysis. SITS, a potent anion transport inhibitor, completely protects the cells from hemolysis by inhibiting chloride flux and the concomitant rise in intracellular pH.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources