Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Mar;22(3):347-365.
doi: 10.1080/17425247.2025.2459756. Epub 2025 Feb 19.

Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections

Affiliations
Free article
Review

Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections

Vincent O Nyandoro et al. Expert Opin Drug Deliv. 2025 Mar.
Free article

Abstract

Introduction: Methicillin-resistant Staphylococcus aureus (MRSA) threatens global health due to its resistance to vancomycin, which is the standard treatment despite limitations, including nephrotoxicity and low intracellular permeability. This necessitates the development of innovative strategies such as nanocarrier-mediated delivery to overcome such limitations. Nanocarriers serve as delivery systems for vancomycin and exhibit inherent antibacterial properties, potentially providing synergism and overcoming MRSA's resistance. Nanocarriers provide sustained release and targeted delivery of vancomycin to the infection site, achieving higher therapeutic concentrations and superior antibacterial activity with reduced doses, which minimizes systemic toxicity. Moreover, leveraging simulations techniques provides more insights on vancomycin-nanocarrier interactions, facilitating the optimization of nanosystems.

Areas covered: The article discusses the potential of nanocarriers in delivering vancomycin to infection site, reducing systemic toxicity, and potentiating anti-MRSA activity. Additionally, it reviews modeling and simulation studies to provide a deeper understanding of vancomycin-nanocarrier interactions. The literature search included experimental articles from 2017 to 2024, searched in Web of Science, Google scholar, PubMed, and Scopus.

Expert opinion: Nanocarrier-mediated delivery of vancomycin offers promising approaches to combat MRSA infections by enhancing therapeutic efficacy and reducing systemic toxicity. However, further research is required to optimize these nanoformulations and advance them to clinical trials and practical applications.

Keywords: MRSA infections; Nanocarrier-mediated; methicillin-resistant Staphylococcus aureus; nanosized drug delivery systems; nanotechnology; vancomycin.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources