Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 25;97(7):3855-3863.
doi: 10.1021/acs.analchem.4c04445. Epub 2025 Feb 14.

pyBinder: Quantitation to Advance Affinity Selection-Mass Spectrometry

Affiliations

pyBinder: Quantitation to Advance Affinity Selection-Mass Spectrometry

Joseph S Brown et al. Anal Chem. .

Abstract

Affinity selection-mass spectrometry (AS-MS) is a ligand discovery platform that relies upon mass spectrometry to identify molecules bound to a biomolecular target. When utilized with large peptide libraries (108 members), AS-MS sample complexity can surpass the sequencing capacity of modern mass spectrometers, resulting in incomplete data, identification of few target-specific ligands, and/or incomplete sequencing. To address this challenge, we introduce pyBinder to perform quantitation on AS-MS data to process primary MS1 data and develop two scores to rank the peptides from the integration of their peak area: target selectivity and concentration-dependent enrichment. We benchmark pyBinder utilizing AS-MS data developed against antihemagglutinin antibody 12ca5, revealing that peptides that contain a motif known for target-specific high-affinity binding are well characterized by these two scores. AS-MS data from a second protein target, WD Repeat Domain 5 (WDR5), is analyzed to confirm the two pyBinder scores reliably capture the target-specific motif-containing peptides. From the results delivered by pyBinder, a list of target-selective features is developed and fed back into subsequent MS experiments to facilitate expanded data generation and the targeted discovery of selective ligands. pyBinder analysis resulted in a 4-fold increase in motif-containing sequence identification for WDR5 (from 3 to 14 ligands discovered), showing the utility of the two scores. This work establishes an improved approach for AS-MS to enable discovery outcomes (i.e., more ligands identified), but also a way to compare AS-MS data across samples, protocols, and conditions broadly.

PubMed Disclaimer

LinkOut - more resources