Targeting GPX4 alleviates ferroptosis and retards abdominal aortic aneurysm formation
- PMID: 39952331
- DOI: 10.1016/j.bcp.2025.116800
Targeting GPX4 alleviates ferroptosis and retards abdominal aortic aneurysm formation
Abstract
Abdominal aortic aneurysm (AAA) is a potentially fatal cardiovascular disease, closely related to inflammation and loss of vascular smooth muscle cells (VSMCs). Ferroptosis is an iron-dependent cell death associated with peroxidation of lipids. However, the direct role of glutathione peroxidase 4 (GPX4) itself determined ferroptosis in the course of AAA pathogenesis remains unknown. Here, we reported that ferroptosis was triggered in human AAA, elastase- and angiotensin II (Ang II)-induced mouse AAA, and Ang II-incubated VSMCs. Inhibition of ferroptosis via global genetic overexpression of GPX4, a critical anti-ferroptosis molecule, markedly prevented both vascular remodeling and inflammatory response. Mechanistically, GPX4 changed the migration and activation of macrophages/monocytes in AAA tissues in mice. Experiments in vitro demonstrated that overexpression of GPX4 prevented the JAK1/STAT3 signaling activation in VSMCs induced by IL-6, production of pro-inflammatory macrophages. Finally, the role of ferroptosis was confirmed on an Ang II-induced mice AAA model. These results emphasized the significance of ferroptosis in AAA, and provided novel insights that therapy focusing on GPX4 might be a promising strategy for treatment of AAA in the clinic.
Keywords: Abdominal aortic aneurysm; Ferroptosis; GPX4; Immune cells; Vascular smooth muscle cells.
Copyright © 2025 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Research Materials