Binding of small molecules at the P-stalk site of ricin A subunit trigger conformational changes that extend into the active site
- PMID: 39955060
- PMCID: PMC11946510
- DOI: 10.1016/j.jbc.2025.108310
Binding of small molecules at the P-stalk site of ricin A subunit trigger conformational changes that extend into the active site
Abstract
Ricin is a category B agent for bioterrorism, and Shiga toxins are the primary virulence factors of Shiga toxin (Stx) producing Escherichia coli. Ricin and Stxs bind the ribosomal P-stalk proteins to depurinate the sarcin/ricin loop on the eukaryotic ribosome and inhibit translation. Both toxins are prime targets for therapeutic intervention because no effective therapy exists for ricin intoxication or Shiga toxin producing Escherichia coli infection. Binding of ricin toxin A subunit (RTA) to the ribosomal P-stalk stimulates depurination of the sarcin/ricin loop by an unknown mechanism. We previously identified compounds that bind the P-stalk pocket of RTA and inhibit catalytic activity. Here we characterize a second-generation lead compound, which binds the P-stalk pocket of RTA with over 30-fold improved affinity relative to the original compound and inhibits the cytotoxicity of ricin holotoxin in Vero cells with no apparent cellular toxicity by itself. This compound also shows protection against Stx2A1. X-ray crystal structure of RTA-inhibitor complexes suggests that the orientation of the carboxylic acid influences the inhibitor contacts at the P-stalk site of RTA and contributes to inhibitor potency. The structural changes triggered at the P-stalk site of RTA were validated by solution NMR-based chemical shift perturbation analysis. A key finding by NMR is that binding-induced conformational changes extend beyond the P-stalk site to residues in the active site cleft of RTA. Collectively, these results provide valuable new insight into the conformational flexibility in the C-terminal domain of RTA and its potential role in mediating the remarkable catalytic activity of ricin.
Keywords: Shiga toxin inhibitors; conformational changes by NMR; ribosome binding; ricin inhibitors; structure-based design.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Conflict of interest The authors declare that they have no conflicts of interests with the contents of this article.
Figures










References
-
- Audi J., Belson M., Patel M., Schier J., Osterloh J. Ricin poisoning: a comprehensive review. JAMA. 2005;294:2342–2351. - PubMed
-
- Endo Y., Tsurugi K., Yutsudo T., Takeda Y., Ogasawara T., Igarashi K. Site of action of a Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur. J. Biochem. 1988;171:45–50. - PubMed
-
- Endo Y., Tsurugi K. RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J. Biol. Chem. 1987;262:8128–8130. - PubMed
-
- Karmali M.A., Petric M., Lim C., Fleming P.C., Arbus G.S., Lior H. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J. Infect. Dis. 1985;151:775–782. - PubMed
-
- Tarr P.I., Gordon C.A., Chandler W.L. Shiga-toxin-producing Escherichia coli and haemolytic uraemic syndrome. Lancet. 2005;365:1073–1086. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources