Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 26;147(8):6813-6824.
doi: 10.1021/jacs.4c16975. Epub 2025 Feb 16.

Molecular Distinction of Cell Wall and Capsular Polysaccharides in Encapsulated Pathogens by In Situ Magic-Angle Spinning NMR Techniques

Affiliations

Molecular Distinction of Cell Wall and Capsular Polysaccharides in Encapsulated Pathogens by In Situ Magic-Angle Spinning NMR Techniques

Alons Lends et al. J Am Chem Soc. .

Abstract

Pathogenic fungal and bacterial cells are enveloped within a cell wall, a molecular barrier at their cell surface, and a critical architecture that constantly evolves during pathogenesis. Understanding the molecular composition, structural organization, and mobility of polysaccharides constituting this cell envelope is crucial to correlate cell wall organization with its role in pathogenicity and to identify potential antifungal targets. For the fungal pathogen Cryptococcus neoformans, the characterization of the cell envelope has been complexified by the presence of an additional external polysaccharide capsular shell. Here, we investigate how magic-angle spinning (MAS) solid-state NMR techniques increase the analytical capabilities to characterize the structure and dynamics of this encapsulated pathogen. The versatility of proton detection experiments, dynamic-based filters, and relaxation measurements facilitate the discrimination of the highly mobile external capsular structure from the internal rigid cell wall of C. neoformans. In addition, we report the in situ detection of triglyceride molecules from lipid droplets based on NMR dynamic filters. Together, we demonstrate a nondestructive technique to study the cell wall architecture of encapsulated microbes using C. neoformans as a model, an airborne opportunistic fungal pathogen that infects mainly immunocompromised but also competent hosts.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources