Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Aug;57(8):103228.
doi: 10.1016/j.aprim.2025.103228. Epub 2025 Feb 16.

Artificial intelligence and natural language processing for improved telemedicine: Before, during and after remote consultation

Affiliations

Artificial intelligence and natural language processing for improved telemedicine: Before, during and after remote consultation

Tiago Cunha Reis. Aten Primaria. 2025 Aug.

Abstract

The rapid evolution of telemedicine has revealed significant documentation and workflow challenges. Clinicians often struggle with the administrative burdens of telehealth visits, sacrificing valuable time better spent in direct patient interaction. This issue is further compounded by the need to maintain accurate and comprehensive records, which can be time-consuming and prone to error when approached manually. In this context, integrating artificial intelligence (AI) and natural language processing (NLP) technologies presents a transformative opportunity. Automating documentation and enhancing workflow efficiency can revolutionize healthcare delivery, alleviating clinician workloads and improving clinical quality and patient safety. Therefore, examining the application of these cutting-edge technologies becomes imperative in addressing the pressing needs of modern healthcare and optimizing health outcomes. The significance of integrating AI and NLP technologies in clinical remote practice cannot be overstated. Hence, this article aims to inspire and motivate healthcare professionals to embrace these transformative changes.

La rápida evolución de la telemedicina ha revelado importantes desafíos en la documentación y el flujo de trabajo. Los clínicos a menudo enfrentan dificultades con las cargas administrativas de las consultas por telemedicina, sacrificando un tiempo valioso que podría destinarse a la interacción directa con los pacientes. Este problema se agrava aún más por la necesidad de mantener registros precisos y completos, lo que puede ser un proceso que consume mucho tiempo y es propenso a errores cuando se realiza manualmente. En este contexto, la integración de tecnologías de inteligencia artificial (IA) y procesamiento de lenguaje natural (PLN) presenta una oportunidad transformadora. La automatización de la documentación y la mejora de la eficiencia en el flujo de trabajo pueden revolucionar la prestación de servicios de salud, aliviando la carga de trabajo de los clínicos y mejorando la calidad clínica y la seguridad del paciente. Por lo tanto, resulta imperativo examinar la aplicación de estas tecnologías de vanguardia para abordar las necesidades urgentes de la atención médica moderna y optimizar los resultados de salud. La importancia de integrar tecnologías de IA y PLN en la práctica clínica remota no puede ser subestimada. Por ende, este artículo tiene como objetivo inspirar y motivar a los profesionales de la salud a adoptar estos cambios transformadores.

Keywords: Artificial intelligence; Consulta remota; Digital health; Digital transformation; Inteligencia artificial; Remote consultation; Salud digital; Telemedicina; Telemedicine; Transformación digital.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Pre-consultation workflow integration of AI and NLP in telemedicine.
Figure 2
Figure 2
AI and NLP integration during remote consultation in telemedicine.
Figure 3
Figure 3
Post-consultation integration of AI and NLP in telemedicine.

Similar articles

Cited by

References

    1. Gatto M.C., Frisicale E.M., Palopoli P., Sapienza M., Caroppo E., Patrizi C., et al. The role of health institutions in training healthcare personnel for the digital transition: the international training program of the order of physicians and dentists of Rome. Int Med Educ. 2024;3:92–99. doi: 10.3390/ime3010008. - DOI
    1. Feller D.J., Zucker J., Yin M.T., Gordon P., Elhadad N. Using clinical notes and natural language processing for automated HIV risk assessment. J Acquir Immune Defic Syndr. 2018;77:160–166. doi: 10.1097/QAI.0000000000001580. - DOI - PMC - PubMed
    1. Carson N.J., Mullin B., Sanchez M.J., Lu F., Yang K., Menezes M., et al. Identification of suicidal behavior among psychiatrically hospitalized adolescents using natural language processing and machine learning of electronic health records. PLoS One. 2019;14 doi: 10.1371/journal.pone.0211116. e0211116. - DOI - PMC - PubMed
    1. Deng Y., Pacheco J.A., Ghosh A., Chung A., Mao C., Smith J.C., et al. Natural language processing to identify lupus nephritis phenotype in electronic health records. BMC Med Inform Decis Mak. 2024;22(Suppl. 2):348. doi: 10.1186/s12911-024-02420-7. - DOI - PMC - PubMed
    1. Ayre K., Bittar A., Kam J., Verma S., Howard L.M., Dutta R. Developing a natural language processing tool to identify perinatal self-harm in electronic healthcare records. PLoS One. 2021;16 doi: 10.1371/journal.pone.0253809. e0253809. - DOI - PMC - PubMed