Imageless optical navigation system is clinically valid for total knee arthroplasty
- PMID: 39957139
- DOI: 10.1080/24699322.2025.2466424
Imageless optical navigation system is clinically valid for total knee arthroplasty
Abstract
Achieving optimal implant position and orientation during total knee arthroplasty (TKA) is a pivotal factor in long-term survival. Computer-assisted navigation (CAN) has been recognized as a trusted technology that improves the accuracy and consistency of femoral and tibial bone cuts. Imageless CAN offers advantages over image-based CAN by reducing cost, radiation exposure, and time. The purpose of this study was to evaluate the accuracy of an imageless optical navigation system for TKA in a clinical setting. Forty-two consecutive patients who underwent primary TKA with CAN were retrospectively reviewed. Femoral and tibial component coronal alignment was assessed via post-operative radiographs by two independent reviewers and compared against coronal alignment angles from the CAN. The primary outcome was the mean absolute difference of femoral and tibial varus/valgus angles between radiograph and intra-operative device measurements. Bland-Altman plots were used to assess agreement between the methods and statistically analyze potential systematic bias. The mean absolute differences between navigation-guided cut measurements and post-operative radiographs were 1.16 ± 1.03° and 1.76 ± 1.38° for femoral and tibial alignment respectively. About 88% of coronal measurements were within ±3°, while 99% were within ±5°. Bland-Altman analysis demonstrated a bias between CAN and radiographic measurements with CAN values averaging 0.52° (95% CI: 0.11°-0.93°) less than their paired radiographic measurements. This study demonstrated the ability of an optical imageless navigation system to measure, on average, femoral and tibial coronal cuts to within 2.0° of post-operative radiographic measurements in a clinical setting.
Keywords: Total knee arthroplasty; accuracy; computer-assisted navigation; valgus; varus.
References
MeSH terms
LinkOut - more resources
Full Text Sources
Medical