Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 4;19(8):7981-7995.
doi: 10.1021/acsnano.4c15227. Epub 2025 Feb 17.

Bioactive Zn-V-Si-Ca Glass Nanoparticle Hydrogel Microneedles with Antimicrobial and Antioxidant Properties for Bone Regeneration in Diabetic Periodontitis

Affiliations

Bioactive Zn-V-Si-Ca Glass Nanoparticle Hydrogel Microneedles with Antimicrobial and Antioxidant Properties for Bone Regeneration in Diabetic Periodontitis

Ling Li et al. ACS Nano. .

Abstract

Periodontitis is a chronic inflammatory condition affecting the periodontal tissue. This condition worsens in diabetic patients due to oxidative stress and inflammation. Herein, we investigated a treatment using bioactive Zn-V-Si-Ca glass nanoparticle hydrogel microneedles. The microneedles contain bioactive glass nanoparticles codoped with zinc and vanadium ions. They also include gallic acid and oxidized methacrylated hyaluronic acid. These microneedles address bacterial dysbiosis and oxidative stress in diabetic periodontitis. They provide antibacterial and antioxidant effects. The microneedles deliver therapeutic agents directly into the gingival tissue. This enhances drug retention and absorption by penetrating the mucosal barrier. In vitro studies demonstrated biocompatibility, excellent antioxidant properties, and acceptable mechanical properties. Meanwhile, the microneedle patches demonstrated antibacterial properties effective against a Gram-negative periodontal pathogen as well as a Gram-positive oral bacterium. In vivo experiments were performed using a diabetic rat model with periodontitis. Results showed significant improvement in alveolar bone regeneration. The hydrogel modulated the inflammatory microenvironment effectively. Ribonucleic acid sequencing revealed downregulation of JAK-STAT and NF-κB inflammation signaling pathways. This work presents a distinctive approach to suppressing the inflammatory response and modulate immune responses for the purpose of treating diabetic periodontitis early.

Keywords: alveolar bone regeneration; bioactive glass nanoparticles; diabetic periodontitis; hydrogel; microneedles.

PubMed Disclaimer

References

Publication types

MeSH terms

LinkOut - more resources