Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Feb 26;109(2):219-27.
doi: 10.1016/0014-2999(85)90423-6.

Electrophysiological effects of platelet-activating factor (PAF-acether) in guinea-pig papillary muscles

Electrophysiological effects of platelet-activating factor (PAF-acether) in guinea-pig papillary muscles

J Tamargo et al. Eur J Pharmacol. .

Abstract

The effects of PAF-acether (10(-11) to 10(-7) M) were studied on the electrical and mechanical activity of guinea-pig papillary muscles. At 10(-11) M PAF-acether did not modify the amplitude and Vmax of the upstroke or the resting membrane potential. At higher concentrations PAF-acether produced a dose-dependent increase in the amplitude and Vmax of the upstroke, shortened the action potential duration and hyperpolarized the resting membrane potential. These effects were accompanied by a biphasic effect on ventricular contractile force. The shortening of the APD was inhibited in muscles pretreated with tetraethylammonium or verapamil. In papillary muscles depolarized by 27 mM K Tyrode solution PAF-acether induced slow action potentials which were blocked by verapamil. PAF-acether produced a dose-dependent increase in amplitude and Vmax of the upstroke on the slow action potentials elicited by isoproterenol, prolonged the action potential duration and hyperpolarized the resting membrane potential. These results suggest that in guinea-pig papillary muscles PAF-acether increased Ca influx via the slow inward current.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources