Chroman-Schiff base derivatives as potential Anti-Tubercular Agents: In silico studies, Synthesis, and Biological evaluation
- PMID: 39965447
- DOI: 10.1016/j.bioorg.2025.108249
Chroman-Schiff base derivatives as potential Anti-Tubercular Agents: In silico studies, Synthesis, and Biological evaluation
Abstract
Tuberculosis (TB) continues to pose a significant public health challenge worldwide. Hydrazide-containing compounds have demonstrated considerable potential as anti- tubercular agents. In this study, we designed, synthesized, and evaluated a series of chroman- Schiff base derivatives, integrating a chroman scaffold with substituted phenyl moieties, as potential therapeutic candidates against TB. In silico studies were conducted to assess the binding interactions of the synthesized derivatives, specifically their R- and S-isomers, with the tuberculosis target protein InhA (PDB ID: 1ZID). Molecular docking revealed that two R-isomer derivatives, SM-5A and SM-6A, exhibited superior binding affinities (-10.6 kcal/mol) compared to the reference ligand INH-NADH (-10.3 kcal/mol) and the natural substrate NADH (-7.5 kcal/mol). Molecular dynamics simulations confirmed the long-term stability of these compound-protein complexes over a 100 ns trajectory, further substantiating their potential as stable inhibitors. The structures of the synthesized derivatives were validated using spectroscopic techniques, including FTIR, 13C NMR, 1H NMR, and HR-MS. Biological evaluation via in vitro anti-tubercular assays against Mycobacterium tuberculosis H37Rv (using the Microplate Alamar Blue Assay) demonstrated that several RRR-isomers displayed notable activity. Among them, SM-2 and SM-5 showed the most potent effects, with minimum inhibitory concentrations (MIC) of 32 µg/mL, comparable to standard anti-tubercular drugs such as isoniazid, ethambutol, and rifampicin. These findings highlight the chroman-schiff base scaffold as a promising foundation for the development of novel anti-tubercular agents. The integration of computational and experimental approaches in this study underscores the potential of these derivatives for further optimization and development into effective anti-tubercular therapeutics.
Keywords: Anti-tubercular; Coumarin; Docking; Dynamics; SAR; Simulation.
Copyright © 2025. Published by Elsevier Inc.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous