The Rise of Algae promoted eukaryote predation in the Neoproterozoic benthos
- PMID: 39970204
- PMCID: PMC11838005
- DOI: 10.1126/sciadv.adt2147
The Rise of Algae promoted eukaryote predation in the Neoproterozoic benthos
Abstract
The proliferation of marine algae in the Neoproterozoic Era is thought to have stimulated the ecology of predatory microbial eukaryotes. To test this proposal, we introduced algal particulate matter (APM) to marine sediments underlying a modern marine oxygen minimum zone with bottom-water oxygen concentrations approximating those of the late Neoproterozoic water column. We found that under anoxia, APM significantly stimulated microbial eukaryote gene expression, particularly genes involved in anaerobic energy metabolism and phagocytosis, and increased the relative abundance of 18S rRNA from known predatory clades. We additionally confirmed that APM promoted the reproduction of benthic foraminifera under anoxia with higher-than-expected net growth efficiencies. Overall, our findings suggest that algal biomass exported to the Neoproterozoic benthos stimulated the ecology of benthic predatory protists under anoxia, thereby creating more modern food webs by enhancing the transfer of fixed carbon and energy to eukaryotes occupying higher trophic levels, including the earliest benthic metazoans.
Figures




References
-
- H. Agić, “Origin and early evolution of the eukaryotes: Perspectives from the fossil record” in Prebiotic Chemistry and the Origin of Life, A. Neubeck, S. McMahon, Eds. (Springer International Publishing, 2021), pp. 255–289.
-
- Brocks J. J., Nettersheim B. J., Adam P., Schaeffer P., Jarrett A. J. M., Güneli N., Liyanage T., van Maldegem L. M., Hallmann C., Hope J. M., Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773 (2023). - PubMed
-
- Stockey R. G., Cole D. B., Farrell U. C., Agić H., Boag T. H., Brocks J. J., Canfield D. E., Cheng M., Crockford P. W., Cui H., Dahl T. W., Del Mouro L., Dewing K., Dornbos S. Q., Emmings J. F., Gaines R. R., Gibson T. M., Gill B. C., Gilleaudeau G. J., Goldberg K., Guilbaud R., Halverson G., Hammarlund E. U., Hantsoo K., Henderson M. A., Henderson C. M., Hodgskiss M. S. W., Jarrett A. J. M., Johnston D. T., Kabanov P., Kimmig J., Knoll A. H., Kunzmann M., LeRoy M. A., Li C., Loydell D. K., Macdonald F. A., Magnall J. M., Mills N. T., Och L. M., O’Connell B., Pagès A., Peters S. E., Porter S. M., Poulton S. W., Ritzer S. R., Rooney A. D., Schoepfer S., Smith E. F., Strauss J. V., Uhlein G. J., White T., Wood R. A., Woltz C. R., Yurchenko I., Planavsky N. J., Sperling E. A., Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras. Nat. Geosci. 17, 667–674 (2024).
-
- Gibson T. M., Shih P. M., Cumming V. M., Fischer W. W., Crockford P. W., Hodgskiss M. S. W., Wörndle S., Creaser R. A., Rainbird R. H., Skulski T. M., Halverson G. P., Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2018).
-
- Brocks J. J., Jarrett A. J. M., Sirantoine E., Hallmann C., Hoshino Y., Liyanage T., The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017). - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources