Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2025 Aug;41(8):1564-1583.
doi: 10.1016/j.cjca.2025.01.037. Epub 2025 Feb 17.

Machine Learning vs Traditional Approaches to Predict All-Cause Mortality for Acute Coronary Syndrome: A Systematic Review and Meta-analysis

Affiliations
Meta-Analysis

Machine Learning vs Traditional Approaches to Predict All-Cause Mortality for Acute Coronary Syndrome: A Systematic Review and Meta-analysis

Aashray K Gupta et al. Can J Cardiol. 2025 Aug.

Abstract

Background: Acute coronary syndrome (ACS) remains one of the leading causes of death globally. Accurate and reliable mortality risk prediction of ACS patients is essential for developing targeted treatment strategies and improve prognostication. Traditional models for risk stratification such as the GRACE and TIMI risk scores offer moderate discriminative value, and do not incorporate contemporary predictors of ACS prognosis. Machine learning (ML) models have emerged as an alternate method that may offer improved risk assessment. This review compares ML models with traditional risk scores for predicting all-cause mortality in patients with ACS.

Methods: PubMed, Embase, Web of Science, Cochrane, CINAHL, Scopus, and IEEE XPlore databases were searched through October 30, 2024, as well as Google Scholar and manual screening of reference lists from included studies and the grey literature for studies comparing ML models with traditional statistical methods for event prediction of ACS patients. The primary outcome was comparative discrimination measured by C-statistics with 95% confidence intervals (CIs) in estimating risk of all-cause mortality.

Results: Twelve studies were included (250,510 patients). The summary C-statistic of best-performing ML models across all end points was 0.88 (95% CI 0.86-0.91), compared with 0.82 (95% CI 0.80-0.85) for traditional methods. The difference in C-statistic between ML models and traditional methods was 0.06 (P < 0.0007). Five studies undertook external validation. The PROBAST tool demonstrated high risk of bias for all studies. Common sources of bias included reporting bias and selection bias. Best-performing ML models demonstrated superior discrimination of all-cause mortality for ACS patients compared with traditional risk scores.

Conclusions: Despite outperforming well established prognostic tools such as the GRACE and TIMI scores, current clinical applications of ML approaches remain uncertain, particularly in view of the need for greater model validation.

PubMed Disclaimer

LinkOut - more resources