Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May;305(Pt 2):141165.
doi: 10.1016/j.ijbiomac.2025.141165. Epub 2025 Feb 17.

Editing a mushroom with high-digestibility using a novel endo-N-acetyl-β-D-glucosaminidase

Affiliations

Editing a mushroom with high-digestibility using a novel endo-N-acetyl-β-D-glucosaminidase

Ying Wang et al. Int J Biol Macromol. 2025 May.

Abstract

Fungi comprise approximately 2 % of the Earth's biomass; however, the human gastrointestinal tract has a limited capacity to digest fungal biomass. In this study, a novel endo-N-acetyl-β-D-glucosaminidase, Endo CM, was characterized in the mushroom-forming fungus Cordyceps militaris, where it plays a role in maintaining the integrity of the fungal cell wall. Through gene editing, the Endo CM promoter was engineered to remove the binding site of the CmCreA carbon catabolite repressor, and the transformant was named CmT. After 12 h of treatment with simulated digestive fluids, the residual mycelial biomass of CmT was reduced to 50.00 ± 1.57 %, compared with 69.47 ± 0.97 % (p = 0.00005) for the parent strain. CmT also released more amino acids during the simulated digestion, suggesting that the expression level of Endo CM affects the accessibility of mycelial biomass to digestive enzymes. Additionally, CmT produced fruiting bodies with improved flavor but impaired appearance. This study highlights the production of alternative proteins with high digestibility and provides a sustainable approach for breeding mushrooms with improved digestibility and absorption properties.

Keywords: CRISPR/Cas9; Cordyceps militaris; Endo-N-acetyl-β-D-glucosaminidase; Molecular design breeding; Mycoprotein.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources