Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb;638(8051):651-655.
doi: 10.1038/s41586-024-08445-2. Epub 2025 Feb 19.

Interferometric single-shot parity measurement in InAs-Al hybrid devices

Microsoft Azure QuantumMorteza Aghaee  1 Alejandro Alcaraz Ramirez  1 Zulfi Alam  1 Rizwan Ali  1 Mariusz Andrzejczuk  1 Andrey Antipov  1 Mikhail Astafev  1 Amin Barzegar  1 Bela Bauer  1 Jonathan Becker  1 Umesh Kumar Bhaskar  1 Alex Bocharov  1 Srini Boddapati  1 David Bohn  1 Jouri Bommer  1 Leo Bourdet  1 Arnaud Bousquet  1 Samuel Boutin  1 Lucas Casparis  1 Benjamin J Chapman  1 Sohail Chatoor  1 Anna Wulff Christensen  1 Cassandra Chua  1 Patrick Codd  1 William Cole  1 Paul Cooper  1 Fabiano Corsetti  1 Ajuan Cui  1 Paolo Dalpasso  1 Juan Pablo Dehollain  1 Gijs de Lange  1 Michiel de Moor  1 Andreas Ekefjärd  1 Tareq El Dandachi  1 Juan Carlos Estrada Saldaña  1 Saeed Fallahi  1 Luca Galletti  1 Geoff Gardner  1 Deshan Govender  1 Flavio Griggio  1 Ruben Grigoryan  1 Sebastian Grijalva  1 Sergei Gronin  1 Jan Gukelberger  1 Marzie Hamdast  1 Firas Hamze  1 Esben Bork Hansen  1 Sebastian Heedt  1 Zahra Heidarnia  1 Jesús Herranz Zamorano  1 Samantha Ho  1 Laurens Holgaard  1 John Hornibrook  1 Jinnapat Indrapiromkul  1 Henrik Ingerslev  1 Lovro Ivancevic  1 Thomas Jensen  1 Jaspreet Jhoja  1 Jeffrey Jones  1 Konstantin V Kalashnikov  1 Ray Kallaher  1 Rachpon Kalra  1 Farhad Karimi  1 Torsten Karzig  1 Evelyn King  1 Maren Elisabeth Kloster  1 Christina Knapp  1 Dariusz Kocon  1 Jonne V Koski  1 Pasi Kostamo  1 Mahesh Kumar  1 Tom Laeven  1 Thorvald Larsen  1 Jason Lee  1 Kyunghoon Lee  1 Grant Leum  1 Kongyi Li  1 Tyler Lindemann  1 Matthew Looij  1 Julie Love  1 Marijn Lucas  1 Roman Lutchyn  1 Morten Hannibal Madsen  1 Nash Madulid  1 Albert Malmros  1 Michael Manfra  1 Devashish Mantri  1 Signe Brynold Markussen  1 Esteban Martinez  1 Marco Mattila  1 Robert McNeil  1 Antonio B Mei  1 Ryan V Mishmash  1 Gopakumar Mohandas  1 Christian Mollgaard  1 Trevor Morgan  1 George Moussa  1 Chetan Nayak  2 Jens Hedegaard Nielsen  1 Jens Munk Nielsen  1 William Hvidtfelt Padkar Nielsen  1 Bas Nijholt  1 Mike Nystrom  1 Eoin O'Farrell  1 Thomas Ohki  1 Keita Otani  1 Brian Paquelet Wütz  1 Sebastian Pauka  1 Karl Petersson  1 Luca Petit  1 Dima Pikulin  1 Guen Prawiroatmodjo  1 Frank Preiss  1 Eduardo Puchol Morejon  1 Mohana Rajpalke  1 Craig Ranta  1 Katrine Rasmussen  1 David Razmadze  1 Outi Reentila  1 David J Reilly  1 Yuan Ren  1 Ken Reneris  1 Richard Rouse  1 Ivan Sadovskyy  1 Lauri Sainiemi  1 Irene Sanlorenzo  1 Emma Schmidgall  1 Cristina Sfiligoj  1 Mustafeez Bashir Shah  1 Kevin Simoes  1 Shilpi Singh  1 Sarat Sinha  1 Thomas Soerensen  1 Patrick Sohr  1 Tomas Stankevic  1 Lieuwe Stek  1 Eric Stuppard  1 Henri Suominen  1 Judith Suter  1 Sam Teicher  1 Nivetha Thiyagarajah  1 Raj Tholapi  1 Mason Thomas  1 Emily Toomey  1 Josh Tracy  1 Michelle Turley  1 Shivendra Upadhyay  1 Ivan Urban  1 Kevin Van Hoogdalem  1 David J Van Woerkom  1 Dmitrii V Viazmitinov  1 Dominik Vogel  1 John Watson  1 Alex Webster  1 Joseph Weston  1 Georg W Winkler  1 Di Xu  1 Chung Kai Yang  1 Emrah Yucelen  1 Roland Zeisel  1 Guoji Zheng  1 Justin Zilke  1
Affiliations

Interferometric single-shot parity measurement in InAs-Al hybrid devices

Microsoft Azure Quantum et al. Nature. 2025 Feb.

Abstract

The fusion of non-Abelian anyons is a fundamental operation in measurement-only topological quantum computation1. In one-dimensional topological superconductors (1DTSs)2-4, fusion amounts to a determination of the shared fermion parity of Majorana zero modes (MZMs). Here we introduce a device architecture5 that is compatible with future tests of fusion rules. We implement a single-shot interferometric measurement of fermion parity6-11 in indium arsenide-aluminium heterostructures with a gate-defined superconducting nanowire12-14. The interferometer is formed by tunnel-coupling the proximitized nanowire to quantum dots. The nanowire causes a state-dependent shift of the quantum capacitance of these quantum dots of up to 1 fF. Our quantum-capacitance measurements show flux h/2e-periodic bimodality with a signal-to-noise ratio (SNR) of 1 in 3.6 μs at optimal flux values. From the time traces of the quantum-capacitance measurements, we extract a dwell time in the two associated states that is longer than 1 ms at in-plane magnetic fields of approximately 2 T. We discuss the interpretation of our measurements in terms of both topologically trivial and non-trivial origins. The large capacitance shift and long poisoning time enable a parity measurement with an assignment error probability of 1%.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Device design for interferometric fermion parity measurement.
a, Idealized model of the system. A nanowire tuned into a 1DTS state hosts MZMs at its ends, depicted by stars. A quantum dot is tunably coupled to the MZMs by tunnel couplings tL and tR, forming an interferometer, which is sensitive to the magnetic flux Φ enclosed by the dashed line and the combined fermion parity Z of the dot–MZMs system. Poisoning by a quasiparticle (purple circle) flips the parity. b, Example energy spectra of the interferometer with total parity Z = −1 (red) and Z = +1 (blue) in the vicinity of the avoided crossing between the states with N and N + 1 electrons on the dot, as a function of the plunger voltage on the quantum dot; see equation (2). c, Gate layout for the interference loop formed by the triple quantum dot and the gate-defined nanowire (light green). Voltage VWP1 is applied to the wire plunger gate (yellow) and voltage VQD2 is applied to the dot 2 plunger gate (purple). The effective couplings tL and tR of panel a depend on the couplings tm1t12 and tm2t23 and detuning of quantum dots 1 and 3, respectively. Quantum dot 2 is capacitively coupled to an off-chip resonator chip for dispersive gate sensing and CQ measurement, which also includes a bias tee for applying dc voltages.
Fig. 2
Fig. 2. Material stack and electron micrograph.
a, Cross-section of the gate-defined superconducting nanowire device design. b, Scanning electron microscopy image with the aluminium strip (blue), first gate layer (yellow) and second gate layer (purple) indicated in false colour. Scale bar, 1 μm.
Fig. 3
Fig. 3. Experimental demonstration of fermion parity measurements.
Measurements in device A (measurement A1) in the (B, VWP1) parameter regime identified through the tune-up procedure discussed in the main text and Section 4 of the Supplementary Information; specifically, VWP1 = −1.8314 V and B = 1.8 T. The raw rf signal has been converted to complex C~Q by the method described in Section 3.1 of the Supplementary Information. a,d, Time traces at Bx values corresponding to minimal (panel a) and maximal (panel d) values of ΔCQ for a fixed choice of VQD2 close to charge degeneracy. b,e, Histograms of complex C~Q for the time trace shown in panels a and d. c,f, Histograms of the real part ReC~Q with Gaussian fits for an extraction of the SNR = δ/(σ1 + σ2) = 5.01, the details of which are given in Section 3.3 of the Supplementary Information. g, Histogram of dwell times aggregated over all values of Bx, in which the signal shows bimodality. Fitting to an exponential shows that the up and down dwell times agree to within the standard error on the fits: 2.05 ± 0.07 ms and 2.02 ± 0.07 ms, respectively. h, Histogram of C~Q values as a function of Bx, showing clear bimodality that is flux-dependent with period h/2e. The vertical arrows indicate the Bx values at which the time traces in panels a and d were taken. i, Kurtosis in the measured quantum capacitance, K(ReC~Q), of dot 2 as a function of Bx (which controls Φ) and ΔVQD2, the change in dot plunger gate voltage from the starting point of the scan (which controls the dot 2 detuning). The dashed red rectangle indicates the ΔVQD2 value at which the data in the other panels were taken.
Fig. 4
Fig. 4. Simulation of fermion parity measurements.
Simulated dynamical CQ as a function of magnetic flux and dot 2 gate offset charge Ng2, including the effects of charge and readout noise, as well as non-zero temperature, drive power and frequency, per the discussion in the text. a, Histogram of the two parity sectors for fixed Ng2 = 0.49. Here we used tm1 = tm2 = 6 μeV, t12 = t23 = 8 μeV, EC1 = 140 μeV, EC2 = 45 μeV, EC3 = 100 μeV, Ng1 = Ng3 = 0.3, T = 50 mK and EM = 0. b, Kurtosis of CQ(t) as a function of Ng2 and flux through the loop. The middle of the dashed red rectangle indicates the Ng2 value used for the linecut in panel a.

References

    1. Bonderson, P., Freedman, M. & Nayak, C. Measurement-only topological quantum computation. Phys. Rev. Lett.101, 010501 (2008). - PubMed
    1. Kitaev, A. Y. Unpaired Majorana fermions in quantum wires. Phys.-Usp.44, 131 (2001).
    1. Lutchyn, R. M., Sau, J. D. & Das Sarma, S. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett.105, 077001 (2010). - PubMed
    1. Oreg, Y., Refael, G. & von Oppen, F. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett.105, 177002 (2010). - PubMed
    1. Karzig, T. et al. Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B95, 235305 (2017).

LinkOut - more resources