Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul;33(4):1818-1826.
doi: 10.1177/09287329241303727. Epub 2025 Feb 2.

Advancement of post-market surveillance of medical devices leveraging artificial intelligence: ECG devices case study

Affiliations

Advancement of post-market surveillance of medical devices leveraging artificial intelligence: ECG devices case study

Madžida Hundur et al. Technol Health Care. 2025 Jul.

Abstract

BackgroundAfter 25 years of implementing the Medical Devices Directive (MDD), in 2017, the new Medical Devices Regulation (MDR) came into force, establishing stricter requirements for post-market surveillance of the safety and performance of medical devices (MD). For electrocardiogram (ECG) devices, which are crucial for monitoring cardiac activities, these requirements are essential to ensure the reliability and accuracy of diagnosing cardiac conditions and timely treatment.ObjectiveThis study aims to enhance post-market surveillance of ECG devices by leveraging Machine Learning (ML) algorithms to predict the operational status of these devices. Specifically, the research focuses on classifying the success or failure of ECG device operations based on performance and safety parameters. The ultimate goal is to improve the management strategies of ECG devices in healthcare institutions, ensuring optimal functionality and increasing the reliability of diagnostic procedures.MethodDuring the inspection process of ECG devices conducted by an accredited laboratory in accordance with ISO 17020 standard in numerous healthcare institutions in Bosnia and Herzegovina, a total of 5577 samples were collected. Various machine learning algorithms, including Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Gaussian Naive Bayes (NB), and Support Vector Machine (SVM), were employed for result comparison and selection of the most accurate algorithm.ResultsAll algorithms demonstrated good performance, but the Random Forest (RF) algorithm stood out, achieving 100% accuracy in predicting the success/unsuccess status of the device. While the results of this research are specific to the collected data from EKG devices, the developed algorithms can be applied to other similar datasets, offering opportunities for broader use in the medical environment.ConclusionImplementing machine learning algorithms for automated systems in healthcare institutions can significantly enhance the quality of patient diagnosis and treatment. Additionally, these systems can optimize costs associated with managing medical devices. Improved post-market surveillance using ML can address challenges related to ensuring device reliability and safety.

Keywords: clinical engineering; electrocardiogram; machine learning; medical device; performance assessment; post-market surveillance.

PubMed Disclaimer

Conflict of interest statement

Declaration of conflicting interestsThe authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Similar articles

LinkOut - more resources