Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 18;10(3):224-228.
doi: 10.1080/23802359.2025.2466587. eCollection 2025.

The complete mitochondrial genome of a ground beetle, Chlaenius naeviger (Carabidae: Harpalinae: Chlaeniini), from South Korea

Affiliations

The complete mitochondrial genome of a ground beetle, Chlaenius naeviger (Carabidae: Harpalinae: Chlaeniini), from South Korea

Yeong Gwon Choi et al. Mitochondrial DNA B Resour. .

Abstract

Chlaenius naeviger Morawitz, 1862 is a ground beetle species with a potential as a biological control agent for agricultural pests. In this study, we sequenced and annotated the complete mitochondrial genome (mitogenome) of C. naeviger, which is 16,594 bp in length and comprises 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an A + T rich region. Furthermore, we used the nucleotide sequences of 13 PCGs to reconstruct a maximum likelihood phylogenetic tree of the family Carabidae, which revealed a close relationship between Chlaeniini and Panagaeini (BP 100). Our findings shed light on the phylogenetic relationships among the harpaline tribes.

Keywords: Chlaeniini; Chlaenius naeviger; ground beetle; mitochondrial genome; phylogeny.

PubMed Disclaimer

Conflict of interest statement

No potential conflict of interest was reported by the author(s).

Figures

Figure 1.
Figure 1.
Habitus of the C. naeviger specimen used in the study (voucher ID number: LEGOA050012). The scale bar represents 5 mm. The photo was taken by YGC.
Figure 2.
Figure 2.
Circular map of the complete mitochondrial genome of C. naeviger. The outer circle indicates genes positioned on the heavy strand and the inner circle indicates genes positioned on the light strand.
Figure 3.
Figure 3.
Maximum likelihood (ML) tree inferred from 13 PCGs nucleotide sequences of 36 carabid species. The family Dytiscidae was used as an outgroup. A star (★) indicates the species studied here. Bootstrap support values are shown above the branches. The sequences of the following species were used in the phylogenetic analysis: Hydroporus planus MW465248 (Villastrigo et al. 2021), Trachypachus holmbergi EU877954 (Sheffield et al. 2008), Cicindela anchoralis MG253029 (Wang et al. 2018), Manticora tibialis MF497821 (López-López and Vogler 2017), Pogonostoma subtiligrossum MF497820 (López-López and Vogler 2017), Omus cazieri MF497813 (López-López and Vogler 2017), Carabus changeonleei MG253028 (Wang et al. 2019), Carabus lafossei KY992943 (Liu et al. 2018), Carabus mirabilissimus GQ344500 (Wan et al. 2012), Carabus smaragdinus MN480425 (Oh et al. 2019), Harpalus pennsylvaticus MN245975 (Kieran 2020), Harpalus sinicus MN310888 (Yu et al. 2019), Abax parallelepipedus KT876877 (Linard et al. 2016), Pterostichus madidus KT876910 (Linard et al. 2016), Nebria brevicollis KT876906 (Linard et al. 2016), Amara aulica MN335930 (Li et al. 2020), Notiophilus quadripunctatus MW800883 (Raupach et al. 2022), Omophron limbatum MW800882 (Raupach et al. 2022), Metrius contractus MF497817 (López-López and Vogler 2017), Scarites buparius MF497822 (López-López and Vogler 2017), Brachinus crepitans JX412826, Carabus hortensis MN122850, Carabus granulatus MN122870, Blethisa multipunctata KX087243, Elaphrus cupreus KX087286, Hexagonia terminalis JX412768, Craspedophorus nobilis JX412738, Pterostichus niger KX087231, Pterostichus oblongopunctatus MN122833, Stomis pumicatus KX087349, Amara communis KX035135, Lebia chlorocephala KX087304, Promecognathus crassus JX313665, Bembidion varium KX087242, Pogonus iridipennis KX087338, and Chlaenius rufifemoratus OR536810.

References

    1. Chan PP, Lowe TM.. 2019. tRNAscan-SE: searching for tRNA genes in genomic sequences. Gene Prediction: Methods and Protocols. 1962:1–14. - PMC - PubMed
    1. Chaolong H, Yin T, Kanglai H, Zhenying W.. 2020. Predation of Chlaenius bioculatus larvae to larvae of Spodoptera frugiperda (Lepidoptera: noctuidae). Chinese J Biol Control. 36(4):507.
    1. Choi EH, Baek SY, Akintola A, Park B, Hwang J, Kim G, Shin CR, Hwang UW.. 2021. The mitochondrial genome of a giant water bug Lethocerus deyrollei (Hemiptera: belostomatidae) from South Korea. Mitochondrial DNA B Resour. 6(3):1001–1003. doi:10.1080/23802359.2021.1893616. - DOI - PMC - PubMed
    1. Choi EH, Mun S, Baek SY, Hwang J, Hwang UW.. 2020. The complete mitochondrial genome of a whiter-spotted flower chafer, Protaetia brevitarsis (Coleoptera: scarabaeidae). Mitochondrial DNA Part B. 5(3):3584–3586. doi:10.1080/23802359.2020.1824592. - DOI - PMC - PubMed
    1. Choudhuri JCB, Misra MP.. 1981. Chlaenius rayotus Bates (Coleoptera: Carabidae: Chlaeniini)-a new predator of Hyblaea puera Cramer (Lepidoptera: Hyblaeidae) from Walayar Reserve Forests. Kerala State. Indian Forester. 107(1):63–65.

LinkOut - more resources