Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 Feb 5:2025.01.26.634793.
doi: 10.1101/2025.01.26.634793.

Ancient origin of an urban underground mosquito

Yuki Haba  1   2 Matthew L Aardema  3 Maria O Afonso  4 Natasha M Agramonte  5 John Albright  6 Ana Margarida Alho  7 Antonio P G Almeida  4 Haoues Alout  8 Bulent Alten  9 Mine Altinli  10   11 Raouf Amara Korba  12 Stefanos S Andreadis  13 Vincent Anghel  14 Soukaina Arich  10   15 Arielle Arsenault-Benoit  16 Célestine Atyame  17 Fabien Aubry  18 Frank W Avila  19 Diego Ayala  20   21 Rasha S Azrag  22 Lilit Babayan  23 Allon Bear  24 Norbert Becker  25   26 Anna G Bega  27   28 Sophia Bejarano  29 Ira Ben-Avi  30 Joshua B Benoit  31 Saïd C Boubidi  32 William E Bradshaw  33 Daniel Bravo-Barriga  34   35 Rubén Bueno-Marí  36 Nataša Bušić  37 Viktoria Čabanová  38 Brittany Cabeje  29 Beniamino Caputo  39 Maria V Cardo  40 Simon Carpenter  41 Elena Carreton  42 Mouhamadou S Chouaïbou  43 Michelle Christian  29 Maureen Coetzee  44   45 William R Conner  46 Anton Cornel  47 C Lorna Culverwell  48   49 Aleksandra I Cupina  50 Katrien De Wolf  51 Isra Deblauwe  51 Brittany Deegan  52 Sarah Delacour-Estrella  53 Alessandra Della Torre  39 Debora Diaz  30 Serena E Dool  54 Vitor L Dos Anjos  1 Sisay Dugassa  55 Babak Ebrahimi  56 Samar Y M Eisa  22 Nohal Elissa  57 Sahar A B Fallatah  58 Ary Faraji  59 Marina V Fedorova  60 Emily Ferrill  29 Dina M Fonseca  61 Kimberly A Foss  62 Cipriano Foxi  63 Caio M França  64 Stephen R Fricker  65   66 Megan L Fritz  16 Eva Frontera  34 Hans-Peter Fuehrer  67 Kyoko Futami  68 Enas H S Ghallab  69 Romain Girod  70 Mikhail I Gordeev  71 David Greer  14 Martin Gschwind  72   73 Milehna M Guarido  74   75 Teoh Guat Ney  76 Filiz Gunay  9 Eran Haklay  77 Alwia A E Hamad  22 Jun Hang  78 Christopher M Hardy  79 Jacob W Hartle  80 Jenny C Hesson  81   82 Yukiko Higa  83 Christina M Holzapfel  33 Ann-Christin Honnen  72   73 Angela M Ionica  84 Laura Jones  41 Përparim Kadriaj  85 Hany A Kamal  86 Colince Kamdem  87 Dmitry A Karagodin  88 Shinji Kasai  83 Mihaela Kavran  50 Emad I M Khater  69 Frederik Kiene  89 Heung-Chul Kim  90 Ilias Kioulos  91 Annette Klein  89 Marko Klemenčić  92 Ana Klobučar  93 Erin Knutson  94 Constantianus J M Koenraadt  95 Linda Kothera  96 Pauline Kreienbühl  18 Pierrick Labbé  10   97 Itay Lachmi  98 Louis Lambrechts  18 Nediljko Landeka  99 Christopher H Lee  100 Bryan D Lessard  101 Ignacio Leycegui  14 Jan O Lundström  81   82 Yoav Lustigman  98 Caitlin MacIntyre  102 Andrew J Mackay  103 Krisztian Magori  104 Carla Maia  4 Colin A Malcolm  105 Ralph-Joncyn O Marquez  29 Dino Martins  106 Reem A Masri  107 Gillian McDivitt  29 Rebekah J McMinn  108 Johana Medina  109 Karen S Mellor  110 Jason Mendoza  29 Enrih Merdić  37 Stacey Mesler  29 Camille Mestre  10 Homer Miranda  29 Martina Miterpáková  111 Fabrizio Montarsi  112 Anton V Moskaev  27 Tong Mu  1 Tim W R Möhlmann  95 Alice Namias  10 Ivy Ng'iru  106 Marc F Ngangué  21 Maria T Novo  4 Laor Orshan  30 José A Oteo  113 Yasushi Otsuka  114 Rossella Panarese  115 Claudia Paredes-Esquivel  116 Lusine Paronyan  23 Steven T Peper  117 Dušan V Petrić  50 Kervin Pilapil  29 Cristina Pou-Barreto  118 Sebastien J Puechmaille  10   97   119 Ute Radespiel  120 Nil Rahola  20 Vivek K Raman  14 Hamadouche Redouane  121 Michael H Reiskind  122 Nadja M Reissen  59 Benjamin L Rice  1   123 Vincent Robert  20 Ignacio Ruiz-Arrondo  113 Ryan Salamat  29 Amy Salamone  94 M'hammed Sarih  15 Giuseppe Satta  63 Kyoko Sawabe  83 Francis Schaffner  124   125 Karen E Schultz  126 Elena V Shaikevich  28 Igor V Sharakhov  107   127 Maria V Sharakhova  107   128 Nader Shatara  129 Anuarbek K Sibataev  130   131 Mathieu Sicard  10 Evan Smith  31 Ryan C Smith  100 Nathalie Smitz  132 Nicolas Soriano  29 Christos G Spanoudis  133 Christopher M Stone  103 Liora Studentsky  30 Tatiana Sulesco  11 Luciano M Tantely  134 La K Thao  135 Noor Tietze  56 Ryan E Tokarz  136 Kun-Hsien Tsai  137 Yoshio Tsuda  83 Nataša Turić  37 Melissa R Uhran  31 Isik Unlu  109 Wim Van Bortel  51   138 Haykuhi Vardanyan  23 Laura Vavassori  72   73 Enkelejda Velo  85 Marietjie Venter  74   139 Goran Vignjević  37 Chantal B F Vogels  95   140 Tatsiana Volkava  141 John Vontas  91   142 Heather M Ward  117 Nazni Wasi Ahmad  76 Mylène Weill  10 Jennifer D West  80 Sarah S Wheeler  143 Gregory S White  59 Nadja C Wipf  72   73   144 Tai-Ping Wu  145 Kai-Di Yu  146 Elke Zimmermann  120 Carina Zittra  147 Petra Korlević  148 Erica McAlister  49 Mara K N Lawniczak  148 Molly Schumer  149 Noah H Rose  1   2 Carolyn S McBride  1   2
Affiliations

Ancient origin of an urban underground mosquito

Yuki Haba et al. bioRxiv. .

Abstract

Understanding how life is adapting to urban environments represents an important challenge in evolutionary biology. Here we investigate a widely cited example of urban adaptation, Culex pipiens form molestus, also known as the London Underground Mosquito. Population genomic analysis of ~350 contemporary and historical samples counter the popular hypothesis that molestus originated belowground in London less than 200 years ago. Instead, we show that molestus first adapted to human environments aboveground in the Middle East over the course of >1000 years, likely in concert with the rise of agricultural civilizations. Our results highlight the role of early human society in priming taxa for contemporary urban evolution and have important implications for understanding arbovirus transmission.

PubMed Disclaimer

Conflict of interest statement

Competing interests: None declared.

Figures

Figure 1.
Figure 1.. Culex pipiens form molestus behavior, ecology, and hypothetical origin.
(A) Female Cx. pipiens complex mosquito. (B) Behavioral and physiological characteristics of Cx. pipiens forms in northern Eurasia. At warmer latitudes molestus can breed aboveground. (C) Example microhabitats: a city park (pipiens) and the flooded basement of an apartment complex (molestus). (D) Two hypotheses describing molestus’ origin. Hypothesis 1 (left) posits that belowground molestus evolved from local aboveground pipiens in situ within the past 100–200 years. Hypothesis 2 (right) posits that molestus first evolved in an aboveground context thousands of years ago, possibly in association with early agricultural societies of the Mediterranean basin, with colonization of belowground habitats (dotted arrow) occurring much later (22, 23). [Image credits: Lawrence Reeves (mosquito); Yuki Haba (city park); Colin Malcolm (flooded basement)]
Fig. 2.
Fig. 2.. Form molestus is genetically isolated from pipiens across the Western Palearctic.
(A) Sampled populations, colored by average PC1 value. Circles and triangles represent aboveground and belowground locations, respectively. Half-circles indicate that both pipiens and molestus were collected in the same or nearby aboveground sites. (B) PCA of genetic variation across all samples in (A) (n = 357). (C) PC1 values plotted against latitude, with marginal frequency histogram at top. The gray dashed line indicates a natural break in the histogram, inferred to separate pipiens and molestus (PC1 = 0.04). Thick outlines mark individuals from North Africa and the Middle East. Asterisk marks a putative F1 hybrid from southwest Russia (Stavropol). Inset shows position of historical London samples in a combined PCA with contemporary mosquitoes (n=22, collected 1940–1985; see also fig. S1). (D) PC1 values for pipiens and molestus individuals collected in the exact same day and trap (green lines) or in the same general location (within 5–45 km; grey lines).
Fig. 3.
Fig. 3.. Ancestral latitudinal gradient within pipiens suggests molestus arose at the southern edge of the Western Palearctic
(A) Hybridization gradient hypothesis: the genetic gradient within pipiens may result from increasing levels of gene flow with molestus as one moves from north to south. (B) Z scores of genome-wide f3 values for each pipiens population when modeled as a mixture of northern pipiens (Sweden) and northern molestus (Belgium). Significantly negative f3 values (Z < −3, green outlines) are consistent with the presence of admixture. (C) f3 statistics of pipiens populations with significant signs of admixture, plotted against latitude. (D) Ancestral gradient hypothesis: the genetic gradient within pipiens may be ancestral, with molestus evolving from southern pipiens populations. (E) Fraction of derived alleles shared by each pipiens population with northern pipiens versus northern molestus. Culex torrentium was used as the outgroup. Light brown in the map shows the Mediterranean climate zone. (F) Fraction of derived alleles shared with northern pipiens vs. molestus, plotted against latitude. Both (C) and (F) include linear regression line with 95% confidence interval and Pearson’s correlation test statistics. Across all analyses, only populations with four or more individuals were included.
Fig. 4.
Fig. 4.. Form molestus evolved thousands of years ago in the Middle East.
(A) molestus clade excerpted from neighbor-joining tree based on pairwise genetic distance (Dxy) among putatively unadmixed pipiens and molestus individuals from the global sample (32). Terminal branches are collapsed at the root of each population, with a symbol and number indicating microhabitat and sample size, respectively (32). Map inset shows distribution of two subgroups of molestus from the tree (orange/red) and pipiens (dark grey). Only molestus is present in Egypt, marked by an asterisk. Black circles mark nodes with >95% bootstrap support. See fig. S5 for the full tree. (B) Genome-wide nucleotide diversity (π) of populations shown in (A). (C) Relative cross-coalescence (rCC) rate between Moroccan pipiens (MAK) and Egyptian molestus (ADR) inferred from phased, whole genome sequences (32). rCC rate is expected to plateau at 1, going backwards in time, when populations have merged into a single ancestral population. Rapid divergence is observed between ~10K and 1K years ago, with a split time (T; rCC rate=50%) of 2,141 years (black dashed arrow) based on estimates of generation time and mutation rate (32). Biologically reasonable upper and lower bounds for these parameters give minimum and maximum split times of 1,298 and 12,468 years (grey arrowheads). Thick black line shows genome-wide result, and light grey lines show 100 bootstrap replicates. Illustration credits: Wheat, Freepik.com. Pharaoh and Glacier, Vecteezy.com.
Fig. 5.
Fig. 5.. Introgression from molestus into pipiens is associated with human density.
(A) Schematic of West Nile virus transmission dynamics. Form pipiens-molestus hybrids, which have intermediate biting preference (42), are implicated in the spillover of WNV from birds to humans (40, 41). (B) Base tree used to simultaneously estimate three potential sources of introgression into focal pipiens populations (X pip): northern pipiens (Sweden, SWE), Middle Eastern molestus (Egypt, ADR), and northern molestus (Belgium, BVR). (CD) Population-specific estimates of ‘gene flow’ from northern pipiens (C), which accounts for the ancestral latitudinal gradient, and northern molestus (D). We did not detect gene flow into any population from Middle Eastern molestus (fig. S8). (E) Correlation between gene flow from northern molestus (D) and human population density within circles of varying radius around each collection site. (F) Gene flow from northern molestus as a function of human density within a 3-km radius of each collection site. Three outliers in grey (Cook’s distance > 4) were excluded, but regression remains significant if included (P = 0.005, R2 = 0.18). [Image credit: Phylopic.com (bird and human)]
Fig. 6.
Fig. 6.. Inferred evolutionary history of molestus.
Three sequential panels show the inferred history of molestus. Left: The latitudinal genetic gradient characterizing extant pipiens populations in the Western Palearctic predates molestus. Middle: The rise of dense, settled, agricultural communities in the Middle East 2000–10,000 years ago, including along the Nile River in Egypt, would have provided new ecological opportunities for mosquitoes that could adapt to human hosts and habitats—driving the evolution of molestus. Right: Eventually molestus must have spread north, where it became established alongside pipiens in the warm Mediterranean region by the 1800s (but possibly earlier) and in belowground microhabitats of cold, northern cities by the early 1900s. Our distance tree (Fig. 4A) suggests that molestus was further spread (most likely by humans) overland all the way to East Asia and from the Mediterranean region overseas to America and Australia.

References

    1. Johnson M. T. J., Munshi-South J., Evolution of life in urban environments. Science 358, eaam8327 (2017). - PubMed
    1. Ritchie H., Samborska V., Roser M., Urbanization. Our world in data (2024).
    1. Vinogradova E. B., Culex Pipiens Pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control (Pensoft, Sofia, Bulgaria, 2000)Pensoft series parasitologica.
    1. Farajollahi A., Fonseca D. M., Kramer L. D., Marm Kilpatrick A., “Bird biting” mosquitoes and human disease: a review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 11, 1577–1585 (2011). - PMC - PubMed
    1. Harbach R., Culex pipiens: Species versus species complex – taxonomic history and perspective. J. Am. Mosq. Control Assoc. 28, 10–23 (2012). - PubMed

Publication types

LinkOut - more resources