Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2025 Jan 24:arXiv:2311.11046v2.

Classification of Major Depressive Disorder Using Vertex-Wise Brain Sulcal Depth, Curvature, and Thickness with a Deep and a Shallow Learning Model

Roberto Goya-Maldonado  1 Tracy Erwin-Grabner  1 Ling-Li Zeng  2   3 Christopher R K Ching  3 Andre Aleman  4 Alyssa R Amod  5 Zeynep Basgoze  6 Francesco Benedetti  7 Bianca Besteher  8 Katharina Brosch  9 Robin Bülow  10 Romain Colle  11   12 Colm G Connolly  13 Emmanuelle Corruble  11   12 Baptiste Couvy-Duchesne  14   15 Kathryn Cullen  6 Udo Dannlowski  16 Christopher G Davey  17 Annemiek Dols  18   19 Jan Ernsting  16 Jennifer W Evans  20 Lukas Fisch  16 Paola Fuentes-Claramonte  21 Ali Saffet Gonul  22 Ian H Gotlib  23 Hans J Grabe  24 Nynke A Groenewold  5 Dominik Grotegerd  16 Tim Hahn  16 J Paul Hamilton  25 Laura K M Han  26   27 Ben J Harrison  17 Tiffany C Ho  28   29 Neda Jahanshad  3 Alec J Jamieson  17 Andriana Karuk  21 Tilo Kircher  9 Bonnie Klimes-Dougan  30 Sheri-Michelle Koopowitz  5 Thomas Lancaster  31   32 Ramona Leenings  16 Meng Li  8 David E J Linden  31   32   33   34 Frank P MacMaster  35 David M A Mehler  16   31   32   36 Susanne Meinert  16   37 Elisa Melloni  7 Bryon A Mueller  6 Benson Mwangi  38 Igor Nenadić  9 Amar Ojha  39 Yasumasa Okamoto  40 Mardien L Oudega  18   41 Brenda W J H Penninx  18 Sara Poletti  7 Edith Pomarol-Clotet  21 Maria J Portella  42 Elena Pozzi  26   27 Joaquim Radua  43 Elena Rodríguez-Cano  21 Matthew D Sacchet  44 Raymond Salvador  21 Anouk Schrantee  45 Kang Sim  46   47   48 Jair C Soares  38 Aleix Solanes  43 Dan J Stein  5 Frederike Stein  9 Aleks Stolicyn  49 Sophia I Thomopoulos  3 Yara J Toenders  26   27   50   51 Aslihan Uyar-Demir  22 Eduard Vieta  52 Yolanda Vives-Gilabert  53 Henry Völzke  54 Martin Walter  8   55 Heather C Whalley  49 Sarah Whittle  17 Nils Winter  16 Katharina Wittfeld  24   56 Margaret J Wright  55   56 Mon-Ju Wu  38 Tony T Yang  28 Carlos Zarate  57 Dick J Veltman  18 Lianne Schmaal  26   27 Paul M Thompson  3 ENIGMA Major Depressive Disorder working group
Affiliations

Classification of Major Depressive Disorder Using Vertex-Wise Brain Sulcal Depth, Curvature, and Thickness with a Deep and a Shallow Learning Model

Roberto Goya-Maldonado et al. ArXiv. .

Abstract

Major depressive disorder (MDD) is a complex psychiatric disorder that affects the lives of hundreds of millions of individuals around the globe. Even today, researchers debate if morphological alterations in the brain are linked to MDD, likely due to the heterogeneity of this disorder. The application of deep learning tools to neuroimaging data, capable of capturing complex non-linear patterns, has the potential to provide diagnostic and predictive biomarkers for MDD. However, previous attempts to demarcate MDD patients and healthy controls (HC) based on segmented cortical features via linear machine learning approaches have reported low accuracies. In this study, we used globally representative data from the ENIGMA-MDD working group containing 7,012 participants from 30 sites (N=2,772 MDD and N=4,240 HC), which allows a comprehensive analysis with generalizable results. Based on the hypothesis that integration of vertex-wise cortical features can improve classification performance, we evaluated the classification of a DenseNet and a Support Vector Machine (SVM), with the expectation that the former would outperform the latter. As we analyzed a multi-site sample, we additionally applied the ComBat harmonization tool to remove potential nuisance effects of site. We found that both classifiers exhibited close to chance performance (balanced accuracy DenseNet: 51%; SVM: 53%), when estimated on unseen sites. Slightly higher classification performance (balanced accuracy DenseNet: 58%; SVM: 55%) was found when the cross-validation folds contained subjects from all sites, indicating site effect. In conclusion, the integration of vertex-wise morphometric features and the use of the non-linear classifier did not lead to the differentiability between MDD and HC. Our results support the notion that MDD classification on this combination of features and classifiers is unfeasible. Future studies are needed to determine whether more sophisticated integration of information from other MRI modalities such as fMRI and DWI will lead to a higher performance in this diagnostic task.

PubMed Disclaimer

Figures

Figure 1:
Figure 1:. Proposed conceptualization levels and implementation of classification procedure.
Left: Higher classification performance in MDD vs HC classification task can be achieved by implementing deep ML models, such as DenseNet, in comparison to a shallow ML model, for example, SVM. Furthermore, the analysis of integrated morphometric features can provide a more detailed description of cortical organization than separated features, leading to better differentiability of MDD from HC. The application of ComBat may improve the generalizability of results as site-related differences are removed. Right: Cortical sulcal depth, curvature, and thickness are first projected into the 2D grid and then transformed into 2D images using OMT projection. We split the data into 10 CV folds according to age and sex (Splitting by Age/Sex) and according to the site belonging (Splitting by Site). After the residualization step, where the age and sex effect are regressed out linearly, we train and test SVM and DenseNet on the diagnosis classification.
Figure 2:
Figure 2:. MDD vs HC classification performance of SVM and DenseNet applied to vertex-wise cortical features.
Balanced accuracy for both classification models when trained on all features integrated with and without ComBat harmonization for both splitting strategies and when trained on single features. Error bars represent standard deviation.

References

    1. Ayyash S., Davis A.D., Alders G.L., MacQueen G., Strother S.C., Hassel S., Zamyadi M., Arnott S.R., Harris J.K., Lam R.W., Milev R., Müller D.J., Kennedy S.H., Rotzinger S., Frey B.N., Minuzzi L., Hall G.B., Team C.-B.I., 2021. Exploring brain connectivity changes in major depressive disorder using functional-structural data fusion: A CAN-BIND-1 study. Hum. Brain Mapp. 42, 4940–4957. 10.1002/hbm.25590 - DOI - PMC - PubMed
    1. Bayer J.M.M., Thompson P.M., Ching C.R.K., Liu M., Chen A., Panzenhagen A.C., Jahanshad N., Marquand A., Schmaal L., Sämann P.G., 2022. Site effects how-to and when: An overview of retrospective techniques to accommodate site effects in multi-site neuroimaging analyses. Front. Neurol. 13. - PMC - PubMed
    1. Belov V., Erwin-Grabner T., Gonul A.S., Amod A.R., Ojha A., Aleman A., Dols A., Scharntee A., Uyar-Demir A., Harrison B.J., Irungu B.M., Besteher B., Klimes-Dougan B., Penninx B.W.J.H., Mueller B.A., Zarate C., Davey C.G., Ching C.R.K., Connolly C.G., Fu C.H.Y., Stein D.J., Dima D., Linden D.E.J., Mehler D.M.A., Pomarol-Clotet E., Pozzi E., Melloni E., Benedetti F., MacMaster F.P., Grabe H.J., Völzke H., Gotlib I.H., Soares J.C., Evans J.W., Sim K., Wittfeld K., Cullen K., Reneman L., Oudega M.L., Wright M.J., Portella M.J., Sacchet M.D., Li M., Aghajani M., Wu M.-J., Jaworska N., Jahanshad N., van der Wee N.J.A., Groenewold N., Hamilton P.J., Saemann P., Bülow R., Poletti S., Whittle S., Thomopoulos S.I., Van S.J.A., Werff D., Koopowitz S.-M., Lancaster T., Ho T.C., Yang T.T., Basgoze Z., Veltman D.J., Schmaal L., Thompson P.M., Goya-Maldonado R., 2022. Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures. - PMC - PubMed
    1. Caruana R., 1997. Multitask Learning. Mach. Learn. 28, 41–75. 10.1023/A:1007379606734 - DOI
    1. Coffey C.E., Wilkinson W.E., Weiner R.D., Parashos, loanis A., Djang, W.T., Webb, M.C., Figiel, G.S., Spritzer, C.E., 1993. Quantitative Cerebral Anatomy in Depression: A Controlled Magnetic Resonance Imaging Study. Arch. Gen. Psychiatry 50, 7–16. 10.1001/archpsyc.1993.01820130009002 - DOI - PubMed

Publication types

LinkOut - more resources