Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr;39(4):844-853.
doi: 10.1038/s41375-025-02530-9. Epub 2025 Feb 20.

Distinct leukemogenic mechanism of acute promyelocytic leukemia based on genomic structure of PML::RARα

Affiliations

Distinct leukemogenic mechanism of acute promyelocytic leukemia based on genomic structure of PML::RARα

Mariko Minami et al. Leukemia. 2025 Apr.

Abstract

Leukemic stem cells (LSCs) of acute myeloid leukemia (AML) can be enriched in the CD34+CD38- fraction and reconstitute human AML in vivo. However, in acute promyelocytic leukemia (APL), which constitutes 10% of all AML cases and is driven by promyelocytic leukemia-retinoic acid receptor alpha (PML::RARα) fusion genes, the presence of LSCs has long been unidentified because of the difficulty in efficient reconstitution of human APL in vivo. Herein, we show that LSCs of the short-type isoform APL, a subtype of APL defined by different breakpoints of the PML gene, concentrate in the CD34+CD38- fraction and express T cell immunoglobulin mucin-3 (TIM-3). Short-type APL cells exhibited distinct gene expression signatures, including LSC-related genes, compared to the other types of APL. Moreover, CD34+CD38-TIM-3+ short-type APL cells efficiently reconstituted human APL in xenograft models with high penetration, whereas CD34- differentiated APL cells did not. Furthermore, CD34+CD38-TIM-3+ short-type APL cells reconstituted leukemia cells after serial transplantation. Thus, short-type APL was hierarchically organized by self-renewing APL-LSCs. The identification of LSCs in a subset of APL and establishment of an efficient patient-derived xenograft model may contribute to further understanding the APL leukemogenesis and devise individual treatments for the eradication of APL LSCs.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests. Ethics approval and consent to participate: Informed consent was obtained from all patients in accordance with the Helsinki Declaration of 1975, revised in 1983. All mouse experiments were conducted in accordance with guidelines approved by the Kyushu University Animal Care Committee. The animal experiment plan for this study has been approved in Kyushu University (A23-291-0).

References

    1. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8. - PubMed - DOI
    1. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–7. - PubMed - DOI
    1. Thomas D, Majeti R. Biology and relevance of human acute myeloid leukemia stem cells. Blood. 2017;129:1577–85. - PubMed - PMC - DOI
    1. Grisolano JL, Wesselschmidt RL, Pelicci PG, Ley TJ. Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood. 1997;89:376–87. - PubMed - DOI
    1. Zimonjic DB, Pollock JL, Westervelt P, Popescu NC, Ley TJ. Acquired, nonrandom chromosomal abnormalities associated with the development of acute promyelocytic leukemia in transgenic mice. Proc Natl Acad Sci USA. 2000;97:13306–11. - PubMed - PMC - DOI

MeSH terms

Substances

LinkOut - more resources