A systematic review of automated hyperpartisan news detection
- PMID: 39982955
- PMCID: PMC11845023
- DOI: 10.1371/journal.pone.0316989
A systematic review of automated hyperpartisan news detection
Abstract
Hyperpartisan news consists of articles with strong biases that support specific political parties. The spread of such news increases polarization among readers, which threatens social unity and democratic stability. Automated tools can help identify hyperpartisan news in the daily flood of articles, offering a way to tackle these problems. With recent advances in machine learning and deep learning, there are now more methods available to address this issue. This literature review collects and organizes the different methods used in previous studies on hyperpartisan news detection. Using the PRISMA methodology, we reviewed and systematized approaches and datasets from 81 articles published from January 2015 to 2024. Our analysis includes several steps: differentiating hyperpartisan news detection from similar tasks, identifying text sources, labeling methods, and evaluating models. We found some key gaps: there is no clear definition of hyperpartisanship in Computer Science, and most datasets are in English, highlighting the need for more datasets in minority languages. Moreover, the tendency is that deep learning models perform better than traditional machine learning, but Large Language Models' (LLMs) capacities in this domain have been limitedly studied. This paper is the first to systematically review hyperpartisan news detection, laying a solid groundwork for future research.
Copyright: © 2025 Maggini et al. This is an open access article distributed under the terms of the CreativeCommonsAttributionLicense, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures




References
-
- Ellger F. The mobilizing effect of party system polarization. Evidence from Europe. Comparat Politic Stud 2023;57(8):1310–38. doi: 10.1177/00104140231194059 - DOI
-
- Dalton RJ. Modeling ideological polarization in democratic party systems. Elector Stud. 2021;72102346. doi: 10.1016/j.electstud.2021.102346 - DOI
Publication types
LinkOut - more resources
Full Text Sources