Decoding the structural basis of ligand recognition and biased signaling in the motilin receptor
- PMID: 39987561
- DOI: 10.1016/j.celrep.2025.115329
Decoding the structural basis of ligand recognition and biased signaling in the motilin receptor
Abstract
The motilin receptor (MTLR) is a key target for treating gastrointestinal (GI) disorders like gastroparesis, yet developing effective agonists remains challenging due to drug tolerance and signaling bias. We present cryoelectron microscopy (cryo-EM) structures of MTLR bound to azithromycin, a macrolide antibiotic, and DS-3801b, a non-macrolide agonist. Distinct ligand recognition mechanisms are revealed, with azithromycin binding deeply within the orthosteric pocket and DS-3801b adopting a special clamp-like conformation stabilized by a water molecule. We also highlight the critical role of extracellular loop 2 (ECL2) in ligand specificity and signaling pathway activation, affecting both G-protein and β-arrestin signaling. Additionally, the "D2.60R2.63S3.28" motif and interactions around transmembranes 6/7 (TM6/7) are identified as key drivers of signaling selectivity. These findings offer insights into the structural dynamics of MTLR, laying the groundwork for the rational design of next-generation GI prokinetic drugs with enhanced efficacy and safety.
Keywords: CP: Molecular biology; DS-3801b; GPCR; azithromycin; biased signaling; macrolide antibiotics; motilin receptor; structural biology.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous