Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 5;17(9):14682-14691.
doi: 10.1021/acsami.4c20795. Epub 2025 Feb 24.

Vapor-Deposited MOF for Low-k Dielectric Seamless High-Aspect-Ratio Interconnect Gap Fill

Affiliations

Vapor-Deposited MOF for Low-k Dielectric Seamless High-Aspect-Ratio Interconnect Gap Fill

Dipayan Pal et al. ACS Appl Mater Interfaces. .

Abstract

A vapor-phase ZIF-8 MOF deposition procedure for seamless high-aspect-ratio interconnect gap fill has been developed with a short process time (15 min) at a 160 °C process temperature. This is the most rapid documented vapor technique to produce a MOF film and is made possible by a higher process temperature and a low background H2O environment. The process consists of ALD of a thin (<5 nm) ZnO film followed by conversion to ZIF-8 in an organic linker (ALD + soak cycle). This method exhibited complete ZnO to MOF conversion, as well as MOFs with low-k (k ∼ 2.6). Dielectric gap fill was investigated utilizing patterned samples with widths ranging from 40 to 400 nm. Both high aspect ratio gap fill and multiple aspect ratio gap fills were shown with no residual ZnO. The MOF gap-fill process could be attributed to the reflow behavior of 2-methylimidazole-ZnO reaction intermediates or nascent product. The MOF was found to be stable at 400 °C under vacuum (1 × 10-2 Torr), which is comparable to other low-k dielectrics. Fluorine plasma etch resistance was tested for the ZIF-8 MOF in comparison to bare Si, SiCOH, and SiO2; the MOF was proven to be the best in resisting plasma etch. This work demonstrated that ALD + soak cycle conversion low-k ZIF-8 MOF films have the potential to be a plasma-free vapor-phase seamless gap fill for high aspect ratio features to be employed in logic and memory device fabrication, as well as three-dimensional heterogeneous integration (3DHI).

Keywords: ALD; MOF; high-aspect-ratio gap fill; interconnects; low-k dielectric.

PubMed Disclaimer

LinkOut - more resources