Ibuprofen inhibits human sweet taste and glucose detection implicating an additional mechanism of metabolic disease risk reduction
- PMID: 39999478
- DOI: 10.1111/bph.70004
Ibuprofen inhibits human sweet taste and glucose detection implicating an additional mechanism of metabolic disease risk reduction
Abstract
Background and purpose: The human sweet taste receptor, TAS1R2-TAS1R3, conveys sweet taste in the mouth and may help regulate glucose metabolism throughout the body. Ibuprofen and naproxen are structurally similar to known inhibitors of TAS1R2-TAS1R3 and have been associated with metabolic benefits. Here, we determined if ibuprofen and naproxen inhibited TAS1R2-TAS1R3 responses to sugars in vitro and their elicited sweet taste in vivo, in humans under normal physiological conditions, with implications for effects on glucose metabolism.
Experimental approach: Human psychophysical taste testing and in vitro cellular calcium assays in HEK293 cells were performed to determine the effects of ibuprofen and naproxen on sugar taste signalling.
Key results: Ibuprofen and naproxen inhibited the sweet taste of sugars and non-nutritive sweeteners in humans, dose-dependently. Ibuprofen reduced cellular signalling of sucrose and sucralose in vitro with heterologously expressed human TAS1R2 (hTAS1R2)-TAS1R3 in human kidney cells. To mirror internal physiology, low concentrations of ibuprofen, which represent human plasma levels after a typical dose, inhibit the sweet taste and oral detection of glucose at concentrations nearing post-prandial plasma glucose levels.
Conclusion and implications: Ibuprofen and naproxen inhibit activation of TAS1R2-TAS1R3 by sugar in humans. Long-term ibuprofen intake is associated with preserved metabolic function and reduced risk of metabolic diseases such as Alzheimer's, diabetes and colon cancer. In addition to its anti-inflammatory properties, we present here a novel pathway that could help explain the associations between metabolic function and chronic ibuprofen use.
Keywords: TAS1R2–TAS1R3; fructose; naproxen; plasma glucose; sucralose; sucrose; sweetness inhibition; taste.
© 2025 The Author(s). British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.
Similar articles
-
Activation and inhibition of the sweet taste receptor TAS1R2-TAS1R3 differentially affect glucose tolerance in humans.PLoS One. 2024 May 1;19(5):e0298239. doi: 10.1371/journal.pone.0298239. eCollection 2024. PLoS One. 2024. PMID: 38691547 Free PMC article.
-
Functional Characterization of the Venus Flytrap Domain of the Human TAS1R2 Sweet Taste Receptor.Int J Mol Sci. 2022 Aug 16;23(16):9216. doi: 10.3390/ijms23169216. Int J Mol Sci. 2022. PMID: 36012481 Free PMC article.
-
TAS1R2/TAS1R3 Single-Nucleotide Polymorphisms Affect Sweet Taste Receptor Activation by Sweeteners: The SWEET Project.Nutrients. 2025 Mar 8;17(6):949. doi: 10.3390/nu17060949. Nutrients. 2025. PMID: 40289963 Free PMC article.
-
An alternative pathway for sweet sensation: possible mechanisms and physiological relevance.Pflugers Arch. 2020 Dec;472(12):1667-1691. doi: 10.1007/s00424-020-02467-1. Epub 2020 Oct 8. Pflugers Arch. 2020. PMID: 33030576 Review.
-
Sweet Taste Signaling: The Core Pathways and Regulatory Mechanisms.Int J Mol Sci. 2022 Jul 26;23(15):8225. doi: 10.3390/ijms23158225. Int J Mol Sci. 2022. PMID: 35897802 Free PMC article. Review.
Cited by
-
Distinct potency of compounds targeting the T1R3 subunit in modulating the response of human sweet and umami taste receptors.Sci Rep. 2025 Jul 25;15(1):27167. doi: 10.1038/s41598-025-11636-0. Sci Rep. 2025. PMID: 40715293 Free PMC article.
-
NSAIDs, Ileal Inflammation, and Glucose Metabolism: Insights from a Large Retrospective Cohort.Nutrients. 2025 Apr 29;17(9):1514. doi: 10.3390/nu17091514. Nutrients. 2025. PMID: 40362822 Free PMC article.
References
REFERENCES
-
- Ait Ouakrim, D., Dashti, S. G., Chau, R., Buchanan, D. D., Clendenning, M., Rosty, C., & Win, A. K. (2015). Aspirin, ibuprofen, and the risk for colorectal cancer in Lynch syndrome. Journal of the National Cancer Institute, 107(9), djv170. https://doi.org/10.1093/jnci/djv170
-
- Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Abbracchio, M. P., Abraham, G., Agoulnik, A., Alexander, W., Al‐Hosaini, K., Bäck, M., Baker, J. G., Barnes, N. M., … Ye, R. D. (2023). The Concise Guide to PHARMACOLOGY 2023/24: G protein‐coupled receptors. British Journal of Pharmacology, 180(Suppl 2), S23–S144. https://doi.org/10.1111/bph.16177
-
- Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Amarosi, L., Anderson, C. M. H., Beart, P. M., Broer, S., Dawson, P. A., Gyimesi, G., Hagenbuch, B., Hammond, J. R., Hancox, J. C., … Verri, T. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Transporters. British Journal of Pharmacology, 180(Suppl 2), S374–S469. https://doi.org/10.1111/bph.16182
-
- Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180(Suppl 2), S289–S373. https://doi.org/10.1111/bph.16181
-
- Bartoshuk, L. M., Duffy, V. B., Green, B. G., Hoffman, H. J., Ko, C.‐W., Lucchina, L. A., & Weiffenbach, J. M. (2004). Valid across‐group comparisons with labeled scales: The gLMS versus magnitude matching. Physiology & Behavior, 82(1), 109–114. https://doi.org/10.1016/j.physbeh.2004.02.033
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources