Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar;39(1):23-38.
doi: 10.1080/01677063.2025.2465536. Epub 2025 Feb 25.

Drosophila WDFY3/ Bchs overexpression impairs neural function

Affiliations
Free article

Drosophila WDFY3/ Bchs overexpression impairs neural function

Marek B Körner et al. J Neurogenet. 2025 Mar.
Free article

Abstract

Pathogenic variants in WDFY3, a gene encoding for an autophagy adaptor termed ALFY, are linked to neurodevelopmental delay and altered brain size in human probands. While the role of WDFY3 loss-of-function is extensively studied in neurons, little is known about the effects of WDFY3 upregulation in different cell types of the central nervous system (CNS). We show that overexpression of the Drosophila melanogaster WDFY3 ortholog, Bchs, in either glia or neurons impaired autophagy and locomotion. Bchs glial overexpression also increased VNC size and glial nuclei number significantly, whereas neuronal Bchs overexpression affected wing and thorax morphology. We identified 79 genes that were differentially expressed and overlapped in flies that overexpress Bchs in glial and neuronal cells, respectively. Additionally, upon neuronal Bchs overexpression differentially expressed genes clustered in gene ontology categories associated with autophagy and mitochondrial function. Our data indicate that glial as well as neuronal Bchs upregulation can have detrimental outcomes on neural function.

Keywords: Bchs; WDFY3; autophagy; neurodevelopmental delay; transcriptomics.

PubMed Disclaimer

Substances

LinkOut - more resources