Genomic alterations and transcriptional phenotypes in circulating free DNA and matched metastatic tumor
- PMID: 40001151
- PMCID: PMC11863907
- DOI: 10.1186/s13073-025-01438-4
Genomic alterations and transcriptional phenotypes in circulating free DNA and matched metastatic tumor
Abstract
Background: Profiling circulating cell-free DNA (cfDNA) has become a fundamental practice in cancer medicine, but the effectiveness of cfDNA at elucidating tumor-derived molecular features has not been systematically compared to standard single-lesion tumor biopsies in prospective cohorts of patients. The use of plasma instead of tissue to guide therapy is particularly attractive for patients with small cell lung cancer (SCLC), due to the aggressive clinical course of this cancer, which makes obtaining tumor biopsies exceedingly challenging.
Methods: In this study, we analyzed a prospective cohort of 49 plasma samples obtained before, during, and after treatment from 20 patients with recurrent SCLC. We conducted cfDNA low-pass whole genome sequencing (0.1X coverage), comparing it with time-point matched tumor characterized using whole-exome (130X) and transcriptome sequencing.
Results: A direct comparison of cfDNA and tumor biopsy revealed that cfDNA not only mirrors the mutation and copy number landscape of the corresponding tumor but also identifies clinically relevant resistance mechanisms and cancer driver alterations not detected in matched tumor biopsies. Longitudinal cfDNA analysis reliably tracks tumor response, progression, and clonal evolution. Sequencing coverage of plasma DNA fragments around transcription start sites showed distinct treatment-related changes and captured the expression of key transcription factors such as NEUROD1 and REST in the corresponding SCLC tumors. This allowed for the prediction of SCLC neuroendocrine phenotypes and treatment responses.
Conclusions: cfDNA captures a comprehensive view of tumor heterogeneity and evolution. These findings have significant implications for the non-invasive stratification of SCLC, a disease currently treated as a single entity.
Keywords: Circulating cell-free DNA; Circulating tumor DNA; Transcription factor binding site; Whole genome sequencing.
© 2025. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Conflict of interest statement
Declarations. Ethics approval and consent to participate: The trial was conducted under a NCI Center for Cancer Research–sponsored investigational new drug application with institutional review board approval (15-c-0145). Written informed consent was obtained from all patients as well as to use and share data and specimens collected for the study. The study was carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans. Consent for publication: Informed consent for publication was obtained from the patients who participated in the study. Competing interests: AT reports research funding from AstraZeneca, Tarveda, EMD Serono, and Prolynx. The remaining authors declare that they have no competing interests.
Figures
Update of
-
Genomic alterations and transcriptional phenotypes in circulating tumor DNA and matched metastatic tumor.bioRxiv [Preprint]. 2024 Jun 3:2024.06.02.597054. doi: 10.1101/2024.06.02.597054. bioRxiv. 2024. Update in: Genome Med. 2025 Feb 25;17(1):15. doi: 10.1186/s13073-025-01438-4. PMID: 38895436 Free PMC article. Updated. Preprint.
References
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
