Integrated cross-linking by TG2 and FXIII generates hepatoprotective fibrin(ogen) deposits in injured liver
- PMID: 40009455
- PMCID: PMC12163735
- DOI: 10.1182/blood.2024026938
Integrated cross-linking by TG2 and FXIII generates hepatoprotective fibrin(ogen) deposits in injured liver
Abstract
The transglutaminase coagulation factor XIII (FXIII) is critical for the stability and function of intravascular fibrin clots. Prorepair extravascular fibrin(ogen) deposits are potentially subject to cross-linking by FXIII and other transglutaminases not typically resident in plasma. However, the impact of these alternative modifiers on fibrin(ogen) structure and function is not known. We tested the hypothesis that tissue transglutaminase (TG2) modifies FXIII-directed fibrin(ogen) cross-linking in vitro and within injured tissue. Global proteomic analysis after experimental acetaminophen (APAP)-induced acute liver injury revealed that intrahepatic fibrin(ogen) deposition was associated with hepatic TG2 levels that exceeded that of FXIII. Mass spectrometry-based cross-link mapping of in vitro fibrin matrices uncovered, to our knowledge, the first evidence of synergistic fibrin(ogen) α-α cross-linking catalyzed by both transglutaminases. Fibrin(ogen) cross-linking was increased in livers from patients with APAP-induced acute liver failure. APAP-challenged TG2-/- mice displayed an altered pattern of FXIII-dependent fibrin(ogen)-γ and fibrin(ogen)-α chain cross-linking aligned with the impact of TG2 on fibrin cross-linking in vitro. This shift in fibrin(ogen) cross-linking exacerbated pathologies including hepatic necrosis and sinusoidal congestion. The results, to our knowledge, are the first to indicate that TG2 impacts FXIII-directed fibrin(ogen) cross-linking, both in vitro and in vivo. The results suggest that TG2 functions to dynamically alter the structure of extravascular fibrin(ogen) to mitigate liver damage, a novel mechanism likely applicable across types of tissue injury.
© 2025 American Society of Hematology. Published by Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
Conflict of interest statement
Conflict-of-interest disclosure: The authors declare no competing financial interests (beyond research support from the National Institutes of Health).
Comment in
-
A novel way for transglutaminase 2 to mitigate liver damage.Blood. 2025 May 22;145(21):2407-2408. doi: 10.1182/blood.2025028561. Blood. 2025. PMID: 40402528 No abstract available.
References
-
- Mitchell JL, Mutch NJ. Let's cross-link: diverse functions of the promiscuous cellular transglutaminase factor XIII-A. J Thromb Haemost. 2019;17(1):19–30. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
