Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Feb 28;11(9):eado3843.
doi: 10.1126/sciadv.ado3843. Epub 2025 Feb 26.

When the wild things are: Defining mammalian diel activity and plasticity

Kadambari Devarajan  1 Mason Fidino  2 Zach J Farris  3 Solny A Adalsteinsson  4 Gabriel Andrade-Ponce  5 Julia L Angstmann  6 Whitney Anthonysamy  7 Jesica Aquino  8   9 Addisu Asefa  10 Belen Avila  8   11 Larissa L Bailey  12 Lyandra Maria de Sousa Barbosa  13 Marcela de Frias Barreto  14 Owain Barton  15   16 Chloe E Bates  17 Mayara Guimarães Beltrão  18 Tori Bird  19 Elizabeth G Biro  4 Francesco Bisi  20 Daniel Bohórquez  21 Mark Boyce  16 Justin S Brashares  22 Grace Bullington  23 Phoebe Burns  24 Jessica Burr  1 Andrew R Butler  25 Kendall L Calhoun  26   27 Tien Trung Cao  28 Natalia Casado  8 Juan Camilo Cepeda-Duque  29 Jonathon D Cepek  30 Adriano Garcia Chiarello  31 Merri Collins  32 Pedro Cordeiro-Estrela  33 Sebastian Costa  8   34 Giacomo Cremonesi  35 Bogdan Cristescu  36   37 Paula Cruz  8   34   38 Anna Carolina Figueiredo de Albuquerque  33   39 Carlos De Angelo  8   11 Cláudia Bueno de Campos  40   41 Liana Mara Mendes de Sena  42 Mario Di Bitetti  8   34   38 Douglas de Matos Dias  29   43 Duane Diefenbach  44 Tim S Doherty  21   45 Thais P Dos Santos  46 Gabriela Teixeira Duarte  47 Timothy M Eppley  48   49   50 John Erb  51 Carolina Franco Esteves  41 Bryn Evans  52 Maria L M Falcão  53 Hugo Fernandes-Ferreira  13   43   54 John R Fieberg  55 Luiz Carlos Firmino de Souza Filho  13 Jason Fisher  56 Marie-Josee Fortin  57 George A Gale  58 Travis Gallo  32 Laken S Ganoe  1 Rony Garcia-Anleu  59 Kaitlyn M Gaynor  60 Tiziana A Gelmi-Candusso  57 Phillys N Gichuru  61 Quimey Gomez  8   34 Austin M Green  62 Luiza Neves Guimarães  14 Jeffrey D Haight  63 Lavendar R Harris  64 Zachary D Hawn  65 Jordan Heiman  66   67 Huy Quoc Hoang  68 Sarah Huebner  69 Fabiola Iannarilli  55   70 María Eugenia Iezzi  8   34   71 Jacob S Ivan  72 Kodi J Jaspers  73 Mark J Jordan  74 Jason Kamilar  75 Mamadou Kane  76 Mohammad Hosein Karimi  77 Marcella Kelly  61 Michel T Kohl  64 William P Kuvlesky Jr  17 Andrew Ladle  56 Rachel N Larson  78 Quy Tan Le  79 Duy Le  79 Van Son Le  80 Elizabeth W Lehrer  2 Patrick E Lendrum  81 Jesse Lewis  82 Andrés Link  83 Diego J Lizcano  84 Jason V Lombardi  17   85 Robert Long  73 Eva López-Tello  86 Camile Lugarini  87 David Lugo  61 Paula MacKay  73 Maria Madadi  77 Rodolfo Assis Magalhães  42 Seth B Magle  2 Ludmila Hufnagel Regis Diniz Maia  14 Salvador Mandujano  86 Taisiia Marchenkova  88 Paulo Henrique Marinho  53 Laurie Marker  36 Julia Martinez Pardo  8   34 Adriano Martinoli  20 Rodrigo Lima Massara  14   89 Juliana Masseloux  1 Dina Matiukhina  88 Amy Mayer  1 Luis Mazariegos  90 Maureen R McClung  91 Alex McInturff  92 Darby McPhail  61 Amy Mertl  93 Christopher R Middaugh  94 David Miller  95 David Mills  96 Dale Miquelle  97 Vivianna Miritis  21 Remington J Moll  25 Péter Molnár  57   98 Robert A Montgomery  99 Toni Lyn Morelli  100 Alessio Mortelliti  52   101 Rachael I Mueller  102 Anna S Mukhacheva  103 Kayleigh Mullen  19 Asia Murphy  104 Vance Nepomuceno  61 Dusit Ngoprasert  58 An Nguyen  105   106 Thanh Van Nguyen  105   106   107 Van Thai Nguyen  108 Hoa Anh Nguyen Quang  109 Rob Nipko  61 Ana Clarissa Costa Nobre  13 Joseph Northrup  110 Megan A Owen  48 Adriano Pereira Paglia  14 Meredith S Palmer  111 Gabriela Palomo-Munoz  32 Lain E Pardo  96   112 Chrystina Parks  113 Ana Maria de Oliveira Paschoal  14   89 Brent Patterson  110 Agustin Paviolo  8   34 Liba Pejchar  12 Mary E Pendergast  114 Humberto L Perotto-Baldivieso  17   115 Timofei Petrov  88 Mairi K P Poisson  25 Daiana Jeronimo Polli  116 Morteza Pourmirzai  77 Alexander Reebin  117 Katie R Remine  73 Lindsey Rich  118 Christopher S Richardson  93 Facundo Robino  8   34 Daniel G Rocha  27   119 Fabiana Lopes Rocha  120   121 Flávio Henrique Guimarães Rodrigues  42 Adam T Rohnke  122 Travis J Ryan  6   123 Carmen M Salsbury  6   123 Heather A Sander  78 Nadia Maria da Cruz Santos-Cavalcante  13 Cagan H Sekercioglu  124   125   126 Ivan Seryodkin  127 Dede Hendra Setiawan  128 Shabnam Shadloo  77 Mahsa Shahhosseini  77 Graeme Shannon  15 Catherine J Shier  129 G Bradley Smith  130 Tom Snyder  131 Rahel Sollmann  27   105 Kimberly L Sparks  94 Kriangsak Sribuarod  132 Colleen C St Clair  16 Theodore Stankowich  133 Robert Steinmetz  134 Cassondra J Stevenson  16 Sunarto Sunarto  128 Thilina D Surasinghe  135 Svetlana V Sutyrina  103 Ronald R Swaisgood  48 Atie Taktehrani  77 Kanchan Thapa  136 Matthew Thorton  137 Andrew Tilker  105   106 Mathias W Tobler  48 Van Bang Tran  79 Jody Tucker  67 Russell C Van Horn  48 Juan S Vargas-Soto  98 Karen L Velásquez-C  5 Jan Venter  112 Eduardo M Venticinque  53 Stijn Verschueren  36   138 Erin Wampole  139 Darcy J Watchorn  24   140 Oliver R Wearn  141   142 Katherine C B Weiss  63   143 Alejandro Welschen  144 Febri Anggriawan Widodo  128 Jacque Williamson  145 Andreas Wilting  105 George Wittemyer  12 Arturo Zavaleta  5 Amanda J Zellmer  146   147 Brian D Gerber  12   148
Affiliations

When the wild things are: Defining mammalian diel activity and plasticity

Kadambari Devarajan et al. Sci Adv. .

Abstract

Circadian rhythms are a mechanism by which species adapt to environmental variability and fundamental to understanding species behavior. However, we lack data and a standardized framework to accurately assess and compare temporal activity for species during rapid ecological change. Through a global network representing 38 countries, we leveraged 8.9 million mammalian observations to create a library of 14,587 standardized diel activity estimates for 445 species. We found that less than half the species' estimates were in agreement with diel classifications from the reference literature and that species commonly used more than one diel classification. Species diel activity was highly plastic when exposed to anthropogenic change. Furthermore, body size and distributional extent were strongly associated with whether a species is diurnal or nocturnal. Our findings provide essential knowledge of species behavior in an era of rapid global change and suggest the need for a new, quantitative framework that defines diel activity logically and consistently while capturing species plasticity.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.. Visual summary of the consolidated dataset with project countries color-coded by taxonomic richness along with a phylogeny of species in the dataset.
(A) Summary of terrestrial coverage of the dataset we have compiled based on more than 8.9 million trail camera photo records spanning 38 countries color-coded by country-specific species richness. The semitransparent black dots on the map represent the average location of each camera trap project, which was summarized from the spatial coordinates of each project’s camera trap locations. (B) Phylogeny of 445 nonvolant mammal species from 67 families and 21 orders, with major clades denoted by silhouettes of representative taxa. A subset of this dataset was used for subsequent analysis after data checks. NA, not applicable.
Fig. 2.
Fig. 2.. A comparison of species reference phenotypes with empirical data.
Large dots for each reference phenotype (y axis) represent the among-species average probability of support for a given diel phenotype (x axis), horizontal bars are ±1 SD of species-specific estimates, and smaller dots are species-specific estimates across all of their respective analysis units. For each species’ analysis unit, the traditional hypothesis set was fitted with equal prior weight on each diel phenotype. Crepuscularity (n = 24) was least accurate at 0%, while nocturnality (n = 202) was found to be about 58% accurate. Diurnality (n = 159) had the best accuracy at 82%, followed by cathemerality at 57% (n = 60) when compared to empirical data.
Fig. 3.
Fig. 3.. Diel phenotype hypotheses and their associated probability space for the traditional and general hypothesis sets, as well as empirical support under each hypothesis set for two sample species (raccoon and African savanna elephant).
The Traditional hypotheses are composed of diurnal, nocturnal, crepuscular, and cathemeral phenotypes while the General hypotheses encapsulates more phenotypes (crepuscular-nocturnal, diurnal-crepuscular, and diurnal-nocturnal). Subplot axes indicate the probability of activity in twilight (x), daytime (y), and nighttime (z).For the species results, each circle represents an analysis unit’s posterior median probabilities of activity, colored by the supported diel phenotype. For both species we see the loss in information when the Traditional hypotheses are considered while the General provides more specific insights, making a clear separation of biphasic activity (e.g., diurnal-nocturnal) from triphasic activity (e.g., General cathemeral). Note that “Reference” refers to the literature reference classification and “Units” is the number of unique analysis units.
Fig. 4.
Fig. 4.. Probability of agreement for each species with reference phenotype category mapped to phylogeny.
Only families with five or more species are plotted (n = the number of species per family that were included in our analysis). Lower probability values mean that, for the corresponding species, there are many analysis units that do not agree with their reference classification. Large dots for each reference phenotype represent the among-species average, horizontal bars are ±1 SD of species-specific estimates within a family, and smaller dots are species-specific estimates across their respective analysis units. For each species’ analysis unit, the traditional hypothesis set was fit with equal prior weight on each diel phenotype.
Fig. 5.
Fig. 5.. The predicted probability of a species being nocturnal, diurnal, or cathemeral depending on a species’ level trait value, average environmental, or anthropogenic gradient.
The solid line and shaded ribbon for each plot respectively represent the median estimate across species and its associated 95% credible interval. Points are species-specific probabilities of nocturnality, diurnality, or cathemerality that were either estimated at their trait value (e.g., mass or distributional extent) or their among analysis-unit average for a given environmental or anthropogenic gradient (e.g., mean distance from the equator, mean hours per day, and mean global human footprint).
Fig. 6.
Fig. 6.. Roughly a third of the species analyzed demonstrated plasticity in their diel phenotypes along gradients of global human footprint.
This plot is a representative example of species that became more nocturnal (y axis) with increasing global human footprint (x axis), which includes the striped skunk (Mephitis mephitis), snowshoe hare (Lepus americanus), gray fox (Urocyon cinereoargenteus), North American porcupine (Erethizon dorsatum), and the crab-eating fox (Cerdocyon thous). Lines represent median species-specific estimates. The thinner line represents nocturnality predictions for global human footprint values that fall either above or below the range observed across a species’ analysis units, whereas the thicker line represents predictions that fall within that range.
Fig. 7.
Fig. 7.. Examples of how analysis units—which represent a subset of a camera trap project’s data—could be generated under different camera trap deployment scenarios and the steps we followed to create them.
We created these analysis units to discretize a camera trap project’s sampling effort, calculate the frequency of species detections that occurred during the twilight, daytime, and nighttime, and connect a species detection data to spatiotemporal covariates (e.g., global human footprint and mean hours of daylight per day).

Similar articles

References

    1. Kronfeld-Schor N., Bloch G., Schwartz W. J., Animal clocks: When science meets nature. Proc. R. Soc. B Biol. Sci. 280, 20131354 (2013). - PMC - PubMed
    1. Kronfeld-Schor N., Visser M. E., Salis L., van Gils J. A., Chronobiology of interspecific interactions in a changing world. Phil. Trans. R. Soc. B 372, 20160248 (2017). - PMC - PubMed
    1. Bennie J. J., Duffy J. P., Inger R., Gaston K. J., Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. U.S.A. 111, 13727–13732 (2014). - PMC - PubMed
    1. Schmitz L., Motani R., Nocturnality in dinosaurs inferred from scleral ring and orbit morphology. Science 332, 705–708 (2011). - PubMed
    1. Anderson S. R., Wiens J. J., Out of the dark: 350 million years of conservatism and evolution in diel activity patterns in vertebrates. Evolution 71, 1944–1959 (2017). - PubMed

LinkOut - more resources