Adversarial perturbation and defense for generalizable person re-identification
- PMID: 40010295
- DOI: 10.1016/j.neunet.2025.107287
Adversarial perturbation and defense for generalizable person re-identification
Abstract
In the Domain Generalizable Person Re-Identification (DG Re-ID) task, the quality of identity-relevant descriptor is crucial for domain generalization performance. However, for hard-matching samples, it is difficult to separate high-quality identity-relevant feature from identity-irrelevant feature. It will inevitably affect the domain generalization performance. Thus, in this paper, we try to enhance the model's ability to separate identity-relevant feature from identity-irrelevant feature of hard matching samples, to achieve high-performance domain generalization. To this end, we propose an Adversarial Perturbation and Defense (APD) Re-identification Method. In the APD, to synthesize hard matching samples, we introduce a Metric-Perturbation Generation Network (MPG-Net) grounded in the concept of metric adversariality. In the MPG-Net, we try to perturb the metric relationship of samples in the latent space, while preserving the essential visual details of the original samples. Then, to capture high-quality identity-relevant feature, we propose a Semantic Purification Network (SP-Net). The hard matching samples synthesized by MPG-Net is used to train the SP-Net. In the SP-Net, we further design the Semantic Self-perturbation and Defense (SSD) Scheme, to better disentangle and purify identity-relevant feature from these hard matching samples. Above all, through extensive experimentation, we validate the effectiveness of the APD method in the DG Re-ID task.
Keywords: Generalizable person Re-ID; Hard matching samples; Metric perturbation; Semantics purification.
Copyright © 2025 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
LinkOut - more resources
Full Text Sources