Folding of mRNA-DNA Origami for Controlled Translation and Viral Vector Packaging
- PMID: 40012449
- DOI: 10.1002/adma.202417642
Folding of mRNA-DNA Origami for Controlled Translation and Viral Vector Packaging
Abstract
mRNA is an important molecule in vaccine development and treatment of genetic disorders. Its capability to hybridize with DNA oligonucleotides in a programmable manner facilitates the formation of RNA-DNA origami structures, which can possess a well-defined morphology and serve as rigid supports for mRNA delivery. However, to date, comprehensive studies on the requirements for efficient folding of mRNA into distinct mRNA-DNA structures while preserving its translation functionality remain elusive. Here, the impact of design parameters on the folding of protein-encoding mRNA into mRNA-DNA origami structures is systematically investigated and the importance of the availability of ribosome-binding sequences on the translation efficiency is demonstrated. Furthermore, these hybrid structures are encapsulated inside virus capsids resulting in protecting them against nuclease degradation and also in enhancement of their cellular uptake. This multicomponent system therefore showcases a modular and versatile nanocarrier. The work provides valuable insight into the design of mRNA-DNA origami structures contributing to the development of mRNA-based gene delivery platforms.
Keywords: cellular delivery; mRNA translation; mRNA‐DNA origami; virus capsid proteins.
© 2025 Wiley‐VCH GmbH.
References
-
- J. A. Kulkarni, D. Witzigmann, S. B. Thomson, S. Chen, B. R. Leavitt, P. R. Cullis, R. van der Meel, Nat. Nanotechnol. 2021, 16, 630.
-
- W. Zhao, X. Hou, O. G. Vick, Y. Dong, Biomater. 2019, 217, 119291.
-
- H. Lee, A. K. R. Lytton‐Jean, Y. Chen, K. T. Love, A. I. Park, E. D. Karagiannis, A. Sehgal, W. Querbes, C. S. Zurenko, M. Jayaraman, C. G. Peng, K. Charisse, A. Borodovsky, M. Manoharan, J. S. Donahoe, J. Truelove, M. Nahrendorf, R. Langer, D. G. Anderson, Nat. Nanotechnol. 2012, 7, 389.
-
- U. Sahin, A. Muik, E. Derhovanessian, I. Vogler, L. M. Kranz, M. Vormehr, A. Baum, K. Pascal, J. Quandt, D. Maurus, S. Brachtendorf, V. Lörks, J. Sikorski, R. Hilker, D. Becker, A.‐K. Eller, J. Grützner, C. Boesler, C. Rosenbaum, M.‐C. Kühnle, U. Luxemburger, A. Kemmer‐Brück, D. Langer, M. Bexon, S. Bolte, K. Karikó, T. Palanche, B. Fischer, A. Schultz, P.‐Y. Shi, et al., Nature 2020, 586, 594.
-
- E. J. Anderson, N. G. Rouphael, A. T. Widge, L. A. Jackson, P. C. Roberts, M. Makhene, J. D. Chappell, M. R. Denison, L. J. Stevens, A. J. Pruijssers, A. B. McDermott, B. Flach, B. C. Lin, N. A. Doria‐Rose, S. O'Dell, S. D. Schmidt, K. S. Corbett, P. A. Swanson II, M. Padilla, K. M. Neuzil, H. Bennett, B. Leav, M. Makowski, J. Albert, K. Cross, V. V. Edara, K. Floyd, M. S. Suthar, D. R. Martinez, R. Baric, et al., N. Engl. J. Med. 2020, 383, 2427.
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
