BACE1-dependent cleavage of GABAA receptor contributes to neural hyperexcitability and disease progression in Alzheimer's disease
- PMID: 40015276
- DOI: 10.1016/j.neuron.2025.01.030
BACE1-dependent cleavage of GABAA receptor contributes to neural hyperexcitability and disease progression in Alzheimer's disease
Abstract
Neural hyperexcitability has been clinically associated with amyloid-β (Aβ) pathology and cognitive impairment in Alzheimer's disease (AD). Here, we show that decreased GABAA receptor (GABAAR) currents are linked to hippocampal granule cell hyperexcitability in the AD mouse model APP23. Elevated levels of β-secretase (BACE1), the β-secretase responsible for generating Aβ peptides, lead to aberrant cleavage of GABAAR β1/2/3 subunits in the brains of APP23 mice and AD patients. Moreover, BACE1-dependent cleavage of the β subunits leads to a decrease in GABAAR-mediated inhibitory currents in BACE1 transgenic mice. Finally, we show that the neural hyperexcitability, Aβ load, and spatial memory deficit phenotypes of APP23 mice are significantly reduced upon the granule cell expression of a non-cleavable β3 subunit mutant. Collectively, our study establishes that BACE1-dependent cleavage of GABAAR β subunits promotes the pathological hyperexcitability known to drive neurodegeneration and cognitive impairment in the AD brain, suggesting that prevention of the cleavage could slow disease progression.
Keywords: BACE1 substrate; GABRB; disinhibition; excitatory inhibitory balance; excitotoxicity; hyperactivity; hyperexcitability; β-secretase.
Copyright © 2025 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests The authors declare no competing interests.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases