Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan 21;5(2):578-585.
doi: 10.1021/jacsau.4c01182. eCollection 2025 Feb 24.

Copper(I)-Catalyzed Asymmetric α-Selenenylation of 2-Acylimidazoles

Affiliations

Copper(I)-Catalyzed Asymmetric α-Selenenylation of 2-Acylimidazoles

Hu Tian et al. JACS Au. .

Abstract

A general method for the catalytic asymmetric α-selenenylation of simple carbonyl compounds is lacking. Herein, a copper(I)-catalyzed enantioselective α-selenenylation of 2-acylimidazoles with electrophilic selenosulfonates is uncovered. The reaction enjoys the advantages of mild conditions, easy reaction protocol, and broad substrate scopes on both 2-acylimidazoles and selenosulfonates. Mechanistic studies reveal a pincer Cu(I)-(S,S)-Ph-BOPA complex as the active catalyst. Some traditional electrophilic selenenylation reagents, such as PhSeCl, PhSeSePh, and 2-(phenylselanyl)isoindoline-1,3-dione lead to inferior results in terms of both yield and enantioselectivity, highlighting the superiority of selenosulfonates. Finally, several transformations based on both the 2-acylimidazole group and the selenoether group are successfully carried out, demonstrating the synthetic utilities of the present methodology.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Scheme 1
Scheme 1. Introduction and Our Working Hypothesis
Scheme 2
Scheme 2. Control Experiments
Figure 1
Figure 1
Investigation of some copper complexes.
Scheme 3
Scheme 3. Transformations of Product 3aa

References

    1. For some selected books, see: Paulmier C.Selenium Reagents and Intermediates in Organic Synthesis; Pergamon Press: Oxford, 1986.
    2. Back T. G.Organoselenium Chemistry A Practical Approach; Oxford University Press: Oxford, 1999.
    3. For some selected reviews, see:

    4. Reich H. J. Functional Group Manipulation Using Organoselenium Reagents. Acc. Chem. Res. 1979, 12, 22–30. 10.1021/ar50133a004. - DOI
    5. Wirth T. Chiral Selenium Compounds in Organic Synthesis. Tetrahedron 1999, 55, 1–28. 10.1016/S0040-4020(98)00946-6. - DOI
    6. Petragnani N.; Stefani H. A.; Valduga C. J. Recent Advances in Selenocyclofunctionalization Reactions. Tetrahedron 2001, 57, 1411–1448. 10.1016/S0040-4020(00)01033-4. - DOI
    7. Sonego J. M.; de Diego S. I.; Szajnman S. H.; Gallo-Rodriguez C.; Rodriguez J. B. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chem.—Eur. J. 2023, 29, e20230003010.1002/chem.202300030. - DOI - PubMed
    1. Denmark S. E.; Kornfilt D. J. P.; Vogler T. Catalytic Asymmetric Thiofunctionalization of Unactivated Alkenes. J. Am. Chem. Soc. 2011, 133, 15308–15311. 10.1021/ja2064395. - DOI - PMC - PubMed
    2. Denmark S. E.; Chi H. M. Lewis Base Catalyzed, Enantioselective, Intramolecular Sulfenoamination of Olefins. J. Am. Chem. Soc. 2014, 136, 8915–8918. 10.1021/ja5046296. - DOI - PMC - PubMed
    3. Denmark S. E.; Hartmann E.; Kornfilt D. J. P.; Wang H. Mechanistic, Crystallographic, and Computational Studies on the Catalytic, Enantioselective Sulfenofunctionalization of Alkenes. Nat. Chem. 2014, 6, 1056–1064. 10.1038/nchem.2109. - DOI - PMC - PubMed
    4. Denmark S. E.; Kornfilt D. J. P. Catalytic, Enantioselective, Intramolecular Sulfenofunctionalization of Alkenes with Phenols. J. Org. Chem. 2017, 82, 3192–3222. 10.1021/acs.joc.7b00295. - DOI - PMC - PubMed
    5. Denmark S. E.; Chi H. M. Catalytic, Enantioselective, Intramolecular Sulfenoamination of Alkenes with Anilines. J. Org. Chem. 2017, 82, 3826–3843. 10.1021/acs.joc.7b00391. - DOI - PMC - PubMed
    6. Böse D.; Denmark S. E. Investigating the Enantiodetermining Step of a Chiral Lewis Base Catalyzed Bromocycloetherification of Privileged Alkenes. Synlett 2018, 29, 433–439. 10.1055/s-0036-1590951. - DOI - PMC - PubMed
    7. Tao Z.; Robb K. A.; Zhao K.; Denmark S. E. Enantioselective, Lewis Base-Catalyzed Sulfenocyclization of Polyenes. J. Am. Chem. Soc. 2018, 140, 3569–3573. 10.1021/jacs.8b01660. - DOI - PMC - PubMed
    8. Tao Z.; Gilbert B. B.; Denmark S. E. Catalytic, Enantioselective Syn-diamination of Alkenes. J. Am. Chem. Soc. 2019, 141, 19161–19170. 10.1021/jacs.9b11261. - DOI - PMC - PubMed
    9. Matviitsuk A.; Denmark S. E. Enantio- and Diastereoselective, Lewis Base Catalyzed, Cascade Sulfenoacetalization of Alkenyl Aldehydes. Angew. Chem., Int. Ed. 2019, 58, 12486–12490. 10.1002/anie.201906535. - DOI - PMC - PubMed
    10. Gilbert B. B.; Eey S. T.; Ryabchuk P.; Garry O.; Denmark S. E. Organoselenium-catalyzed Enantioselective Syn-dichlorination of Unbiased Alkenes. Tetrahedron 2019, 75, 4086–4098. 10.1016/j.tet.2019.05.054. - DOI - PMC - PubMed
    11. Mumford E. M.; Hemric B. N.; Denmark S. E. Catalytic, Enantioselective Syn-oxyamination of Alkenes. J. Am. Chem. Soc. 2021, 143, 13408–13417. 10.1021/jacs.1c06750. - DOI - PubMed
    12. Hilby K. M.; Denmark S. E. Lewis Base Catalyzed, Sulfenium Ion Initiated Enantioselective, Spiroketalization Cascade. J. Org. Chem. 2021, 86, 14250–14289. 10.1021/acs.joc.1c02271. - DOI - PMC - PubMed
    13. Matviitsuk A.; Panger J. L.; Denmark S. E. Enantioselective Inter- and Intramolecular Sulfenofunctionalization of Unactivated Cyclic and (Z)-Alkenes. ACS Catal. 2022, 12, 7377–7385. 10.1021/acscatal.2c01232. - DOI - PMC - PubMed
    1. Kawamata Y.; Hashimoto T.; Maruoka K. A Chiral Electrophilic Selenium Catalyst for Highly Enantioselective Oxidative Cyclization. J. Am. Chem. Soc. 2016, 138, 5206–5209. 10.1021/jacs.6b01462. - DOI - PubMed
    2. Otsuka Y.; Shimazaki Y.; Nagaoka H.; Maruoka K.; Hashimoto T. Scalable Synthesis of a Chiral Selenium π-Acid Catalyst and Its Use in Enantioselective Iminolactonization of β,γ-Unsaturated Amide. Synlett 2019, 30, 1679–1682. 10.1055/s-0039-1690109. - DOI
    1. Luo J.; Liu Y.; Zhao X. Chiral Selenide-Catalyzed Enantioselective Construction of Saturated Trifluoromethylthiolated Azaheterocycles. Org. Lett. 2017, 19, 3434–3437. 10.1021/acs.orglett.7b01392. - DOI - PubMed
    2. Liu X.; Liang Y.; Ji J.; Luo J.; Zhao X. Chiral Selenide-Catalyzed Enantioselective Allylic Reaction and Intermolecular Difunctionalization of Alkenes: Efficient Construction of C-SCF3 Stereogenic Molecules. J. Am. Chem. Soc. 2018, 140, 4782–4786. 10.1021/jacs.8b01513. - DOI - PubMed
    3. Luo J.; Cao Q.; Cao X.; Zhao X. Selenide-catalyzed Enantioselective Synthesis of Trifluoromethylthiolated Tetrahydronaphthalenes by Merging Desymmetrization and Trifluoromethylthiolation. Nat. Commun. 2018, 9, 527.10.1038/s41467-018-02955-0. - DOI - PMC - PubMed
    4. Qin T.; Jiang Q.; Ji J.; Luo J.; Zhao X. Chiral Selenide-catalyzed Enantioselective Synthesis of Trifluoromethylthiolated 2,5-disubstituted Oxazolines. Org. Biomol. Chem. 2019, 17, 1763–1766. 10.1039/C8OB02575D. - DOI - PubMed
    5. Liang Y.; Zhao X. Enantioselective Construction of Chiral Sulfides via Catalytic Electrophilic Azidothiolation and Oxythiolation of N-allyl Sulfonamides. ACS Catal. 2019, 9, 6896–6902. 10.1021/acscatal.9b01900. - DOI
    6. Zhang Y.; Liang Y.; Zhao X. Chiral Selenide-catalyzed, Highly Regio- and Enantioselective Intermolecular Thioarylation of Alkenes with Phenols. ACS Catal. 2021, 11, 3755–3761. 10.1021/acscatal.1c00296. - DOI
    7. Guo R.; Liu Z.; Zhao X. Efficient Synthesis of P-chirogenic Compounds Enabled by Chiral Selenide-catalyzed Enantioselective Electrophilic Aromatic Halogenation. CCS Chem. 2021, 3, 2617–2628. 10.31635/ccschem.020.202000530. - DOI
    8. Liang Y.; Jiao H.; Zhang H.; Wang Y. Q.; Zhao X. Chiral Chalcogenide-catalyzed Enantioselective Electrophilic Hydrothiolation of Alkenes. Org. Lett. 2022, 24, 7210–7215. 10.1021/acs.orglett.2c03009. - DOI - PubMed
    1. Nishiyori R.; Maynard J. R. J.; Shirakawa S. Chiral Bifunctional Selenide Catalysts for Asymmetric Bromolactonization. Asian J. Org. Chem. 2020, 9, 192–196. 10.1002/ajoc.201900688. - DOI
    2. Nishiyori R.; Okuno K.; Chan B.; Shirakawa S. Chiral Bifunctional Selenide Catalysts for Asymmetric Iodolactonizations. Chem. Pharm. Bull. 2022, 70, 599–604. 10.1248/cpb.c22-00049. - DOI - PubMed
    3. Okuno K.; Nakamura T.; Shirakawa S. Asymmetric Catalysis of Chiral Bifunctional Selenides and Selenonium Salts Bearing a Urea Group. Asian J. Org. Chem. 2021, 10, 655–659. 10.1002/ajoc.202100001. - DOI

LinkOut - more resources