Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jun;51(6):109709.
doi: 10.1016/j.ejso.2025.109709. Epub 2025 Feb 25.

Non-invasive classification of non-neoplastic and neoplastic gallbladder polyps based on clinical imaging and ultrasound radiomics features: An interpretable machine learning model

Affiliations

Non-invasive classification of non-neoplastic and neoplastic gallbladder polyps based on clinical imaging and ultrasound radiomics features: An interpretable machine learning model

Minghui Dou et al. Eur J Surg Oncol. 2025 Jun.

Abstract

Background: Gallbladder (GB) adenomas, precancerous lesions for gallbladder carcinoma (GBC), lack reliable non-invasive tools for preoperative differentiation of neoplastic polyps from cholesterol polyps. This study aimed to evaluate an interpretable machine learning (ML) combined model for the precise differentiation of the pathological nature of gallbladder polyps (GPs).

Methods: This study consecutively enrolled 744 patients from Xi'an Jiaotong University First Affiliated Hospital between January 2017 and December 2023 who were pathologically diagnosed postoperatively with cholesterol polyps, adenomas or T1-stage GBC. Radiomics features were extracted and selected, while clinical variables were subjected to univariate and multivariate logistic regression analyses to identify significant predictors of neoplastic polyps. A optimal ML-based radiomics model was developed, and separate clinical, US and combined models were constructed. Finally, SHapley Additive exPlanations (SHAP) was employed to visualize the classification process.

Results: The areas under the curves (AUCs) of the CatBoost-based radiomics model were 0.852 (95 % CI: 0.818-0.884) and 0.824 (95 % CI: 0.758-0.881) for the training and test sets, respectively. The combined model demonstrated the best performance with an improved AUC of 0.910 (95 % CI: 0.885-0.934) and 0.869 (95 % CI: 0.812-0.919), outperformed the clinical, radiomics, and US model (all P < 0.05), and reduced the rate of unnecessary cholecystectomies. SHAP analysis revealed that the polyp short diameter is a crucial independent risk factor in predicting the nature of the GPs.

Conclusion: The ML-based combined model may be an effective non-invasive tool for improving the precision treatment of GPs, utilizing SHAP to visualize the classification process can enhance its clinical application.

Keywords: Classification model; Gallbladder carcinoma; Gallbladder polyps; Machine learning; Radiomics; SHAP.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources