Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 11;41(9):6186-6196.
doi: 10.1021/acs.langmuir.4c05173. Epub 2025 Mar 2.

Determining Molecular-Level Interactions of Carboxyl-Functionalized Nanodiamonds with Bacterial Membrane Models as the Basis for Antimicrobial Activity

Affiliations

Determining Molecular-Level Interactions of Carboxyl-Functionalized Nanodiamonds with Bacterial Membrane Models as the Basis for Antimicrobial Activity

Giovanna Eller Silva Sousa et al. Langmuir. .

Abstract

Carbon-based nanostructures, such as carboxylated nanodiamonds (NDCOOHs), are promising to combat resistant bacterial strains by targeting their protective membranes. Understanding their interactions with bacterial membranes is therefore important for elucidating the mechanisms underlying NDCOOHs antimicrobial activity. In this study, we investigated the incorporation of NDCOOHs into lipid Langmuir monolayers mimicking cytoplasmic membranes of Escherichia coli and Staphylococcus aureus, model systems for Gram-negative and Gram-positive bacteria, respectively. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), we observed significant interactions between NDCOOHs and the polar head groups of the E. coli lipid monolayer, driven by electrostatic attraction to ammonium groups and repulsion from phosphate and carbonyl ester groups, limiting deeper penetration into the lipid chains. In contrast, S. aureus monolayers exhibited more pronounced changes in their hydrocarbon chains, indicating deeper NDCOOHs penetration. NDCOOHs incorporation increased the surface area of the E. coli monolayer by approximately 4% and reduced that of S. aureus by about 8%, changes likely attributed to lipid oxidation induced by superoxide and/or hydroxyl radicals generated by NDCOOHs. These findings highlight the distinct interactions of NDCOOHs with Gram-positive and Gram-negative lipid membranes, offering valuable insights for their development as targeted antimicrobial agents.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Schematic illustration for (A) E. coli (Gram-negative) and (B) S. aureus (Gram-positive) bacteria along with their respective membrane structures (insets). The lipid membrane regions mimicked in this study are indicated, and the molecular structures of the lipids in the composition of (A) E. coli lipid extract and (B) S. aureus lipid mixture are shown. The numbers 1 and 2 refer to the lipid chains of PE and PG, which can have different sizes and be unsaturated or not.
Figure 2
Figure 2
Surface pressure (mN/m) versus area (102 cm2/mL lipid extract) isotherms and surface compression modulus (Cs–1) for (A) E. coli and (B) E. coli:NDCOOHs (1:1, 1:2, and 1:4, v/v) and for (C) S. aureus and (D) S. aureus:NDCOOHs monolayers (1:1, 1:2, and 1:4, v/v).
Figure 3
Figure 3
PM-IRRAS spectra for (A) E. coli and E. coli:NDCOOHs (1:1) and (B) S. aureus and S. aureus:NDCOOHs (1:2) monolayers on the PBS subphase at 30 mN/m. The left panels highlight bands related to polar head groups, while the right panels refer to those associated with alkyl chain groups.
Figure 4
Figure 4
Schematic representation of the binding mechanism of NDCOOHs in (A) E. coli extract and (B) S. aureus lipid mixture monolayers. Green arrows indicate attractive electrostatic interactions, red arrows show repulsive electrostatic interactions, and blue dashed arrows illustrate secondary interactions, such as van der Waals and hydrogen bonding.
Figure 5
Figure 5
Comparative evolution of relative area (A/A0) versus time (100 min) for (A) E. coli and E. coli:NDCOOHs (1:1) and for (B) S. aureus and S. aureus:NDCOOHs (1:2) recorded at constant pressure of 30 mN/m. A0 is the extrapolated area of the isotherms at 30 mN/m down to zero pressure.

References

    1. Basak S.; Singh P.; Rajurkar M. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study. J. Pathog. 2016, 2016, 1–5. 10.1155/2016/4065603. - DOI - PMC - PubMed
    1. Gona P. N.; More A. F. Bacterial Pathogens and Climate Change. Lancet 2022, 400 (10369), 2161–2163. 10.1016/S0140-6736(22)02424-2. - DOI - PubMed
    1. Ikuta K. S.; Swetschinski L. R.; Robles Aguilar G.; Sharara F.; Mestrovic T.; Gray A. P.; Davis Weaver N.; Wool E. E.; Han C.; Gershberg Hayoon A.; Aali A.; Abate S. M.; Abbasi-Kangevari M.; Abbasi-Kangevari Z.; Abd-Elsalam S.; Abebe G.; Abedi A.; Abhari A. P.; Abidi H.; Aboagye R. G.; Absalan A.; Abubaker Ali H.; Acuna J. M.; Adane T. D.; Addo I. Y.; Adegboye O. A.; Adnan M.; Adnani Q. E. S.; Afzal M. S.; Afzal S.; Aghdam Z. B.; Ahinkorah B. O.; Ahmad A.; Ahmad A. R.; Ahmad R.; Ahmad S.; Ahmad S.; Ahmadi S.; Ahmed A.; Ahmed H.; Ahmed J. Q.; Ahmed Rashid T.; Ajami M.; Aji B.; Akbarzadeh-Khiavi M.; Akunna C. J.; Al Hamad H.; Alahdab F.; Al-Aly Z.; Aldeyab M. A.; Aleman A. V.; Alhalaiqa F. A. N.; Alhassan R. K.; Ali B. A.; Ali L.; Ali S. S.; Alimohamadi Y.; Alipour V.; Alizadeh A.; Aljunid S. M.; Allel K.; Almustanyir S.; Ameyaw E. K.; Amit A. M. L.; Anandavelane N.; Ancuceanu R.; Andrei C. L.; Andrei T.; Anggraini D.; Ansar A.; Anyasodor A. E.; Arabloo J.; Aravkin A. Y.; Areda D.; Aripov T.; Artamonov A. A.; Arulappan J.; Aruleba R. T.; Asaduzzaman M.; Ashraf T.; Athari S. S.; Atlaw D.; Attia S.; Ausloos M.; Awoke T.; Ayala Quintanilla B. P.; Ayana T. M.; Azadnajafabad S.; Azari Jafari A.; Mahesh P. A.; Padubidri J. R.; Pakshir K.; Palicz T.; Pana A.; Pardhan S.; Paredes J. L.; Parekh U.; Park E.-C.; Park S.; Pathak A.; Paudel R.; Paudel U.; Pawar S.; Pazoki Toroudi H.; Peng M.; Pensato U.; Pepito V. C. F.; Pereira M.; Peres M. F. P.; Perico N.; Petcu I.-R.; Piracha Z. Z.; Podder I.; Pokhrel N.; Poluru R.; Postma M. J.; Pourtaheri N.; Prashant A.; Qattea I.; Rabiee M.; Rabiee N.; Radfar A.; Raeghi S.; Rafiei S.; Raghav P. R.; Rahbarnia L.; Rahimi-Movaghar V.; Rahman M.; Rahman M. A.; Rahmani A. M.; Rahmanian V.; Ram P.; Ranjha M. M. A. N.; Rao S. J.; Rashidi M.-M.; Rasul A.; Ratan Z. A.; Rawaf S.; Rawassizadeh R.; Razeghinia M. S.; Redwan E. M. M.; Regasa M. T.; Remuzzi G.; Reta M. A.; Rezaei N.; Rezapour A.; Riad A.; Ripon R. K.; Rudd K. E.; Saddik B.; Sadeghian S.; Saeed U.; Safaei M.; Safary A.; Safi S. Z.; Sahebazzamani M.; Sahebkar A.; Sahoo H.; Salahi S.; Salahi S.; Salari H.; Salehi S.; Samadi Kafil H.; Samy A. M.; Sanadgol N.; Sankararaman S.; Sanmarchi F.; Sathian B.; Sawhney M.; Saya G. K.; Senthilkumaran S.; Seylani A.; Shah P. A.; Shaikh M. A.; Shaker E.; Shakhmardanov M. Z.; Sharew M. M.; Sharifi-Razavi A.; Sharma P.; Sheikhi R. A.; Sheikhy A.; Shetty P. H.; Shigematsu M.; Shin J. I.; Shirzad-Aski H.; Shivakumar K. M.; Shobeiri P.; Shorofi S. A.; Shrestha S.; Sibhat M. M.; Sidemo N. B.; Sikder M. K.; Silva L. M. L. R.; Singh J. A.; Singh P.; Singh S.; Siraj M. S.; Siwal S. S.; Skryabin V. Y.; Skryabina A. A.; Socea B.; Solomon D. D.; Song Y.; Sreeramareddy C. T.; Suleman M.; Suliankatchi Abdulkader R.; Sultana S.; Szócska M.; Tabatabaeizadeh S.-A.; Tabish M.; Taheri M.; Taki E.; Tan K.-K.; Tandukar S.; Tat N. Y.; Tat V. Y.; Tefera B. N.; Tefera Y. M.; Temesgen G.; Temsah M.-H.; Tharwat S.; Thiyagarajan A.; Tleyjeh I. I.; Troeger C. E.; Umapathi K. K.; Upadhyay E.; Valadan Tahbaz S.; Valdez P. R.; Van Den Eynde J.; Van Doorn H. R.; Vaziri S.; Verras G.-I.; Viswanathan H.; Vo B.; Waris A.; Wassie G. T.; Wickramasinghe N. D.; Yaghoubi S.; Yahya G. A. T. Y.; Yahyazadeh Jabbari S. H.; Yigit A.; Yiğit V.; Yon D. K.; Yonemoto N.; Zahir M.; Zaman B. A.; Zaman S. B.; Zangiabadian M.; Zare I.; Zastrozhin M. S.; Zhang Z.-J.; Zheng P.; Zhong C.; Zoladl M.; Zumla A.; Hay S. I.; Dolecek C.; Sartorius B.; Murray C. J. L.; Naghavi M.; Linda Merin J.; Jakovljevic M.; Jamshidi E.; Javaheri T.; Javanmardi F.; Javidnia J.; Jayapal S. K.; Jayarajah U.; Jebai R.; Jha R. P.; Joo T.; Joseph N.; Joukar F.; Jozwiak J. J.; Kacimi S. E. O.; Kadashetti V.; Kalankesh L. R.; Kalhor R.; Kamal V. K.; Kandel H.; Kapoor N.; Karkhah S.; Kassa B. G.; Kassebaum N. J.; Katoto P. D.; Keykhaei M.; Khajuria H.; Khan A.; Khan I. A.; Khan M.; Khan M. N.; Khan M. A.; Khatatbeh M. M.; Khater M. M.; Khayat Kashani H. R.; Khubchandani J.; Kim H.; Kim M. S.; Kimokoti R. W.; Kissoon N.; Kochhar S.; Kompani F.; Kosen S.; Koul P. A.; Koulmane Laxminarayana S. L.; Krapp Lopez F.; Krishan K.; Krishnamoorthy V.; Kulkarni V.; Kumar N.; Kurmi O. P.; Kuttikkattu A.; Kyu H. H.; Lal D. K.; Lám J.; Landires I.; Lasrado S.; Lee S.; Lenzi J.; Lewycka S.; Li S.; Lim S. S.; Liu W.; Lodha R.; Loftus M. J.; Lohiya A.; Lorenzovici L.; Lotfi M.; Mahmoodpoor A.; Mahmoud M. A.; Mahmoudi R.; Majeed A.; Majidpoor J.; Makki A.; Mamo G. A.; Manla Y.; Martorell M.; Matei C. N.; McManigal B.; Mehrabi Nasab E.; Mehrotra R.; Melese A.; Mendoza-Cano O.; Menezes R. G.; Mentis A.-F. A.; Micha G.; Michalek I. M.; Micheletti Gomide Nogueira De Sá A. C.; Milevska Kostova N.; Mir S. A.; Mirghafourvand M.; Mirmoeeni S.; Mirrakhimov E. M.; Mirza-Aghazadeh-Attari M.; Misganaw A. S.; Misganaw A.; Misra S.; Mohammadi E.; Mohammadi M.; Mohammadian-Hafshejani A.; Mohammed S.; Mohan S.; Mohseni M.; Mokdad A. H.; Momtazmanesh S.; Monasta L.; Moore C. E.; Moradi M.; Moradi Sarabi M.; Morrison S. D.; Motaghinejad M.; Mousavi Isfahani H.; Mousavi Khaneghah A.; Mousavi-Aghdas S. A.; Mubarik S.; Mulita F.; Mulu G. B. B.; Munro S. B.; Muthupandian S.; Nair T. S.; Naqvi A. A.; Narang H.; Natto Z. S.; Naveed M.; Nayak B. P.; Naz S.; Negoi I.; Nejadghaderi S. A.; Neupane Kandel S.; Ngwa C. H.; Niazi R. K.; Nogueira De Sá A. T.; Noroozi N.; Nouraei H.; Nowroozi A.; Nuñez-Samudio V.; Nutor J. J.; Nzoputam C. I.; Nzoputam O. J.; Oancea B.; Obaidur R. M.; Ojha V. A.; Okekunle A. P.; Okonji O. C.; Olagunju A. T.; Olusanya B. O.; Omar Bali A.; Omer E.; Otstavnov N.; Oumer B.; Darshan B. B.; Badar M.; Badiye A. D.; Baghcheghi N.; Bagherieh S.; Baig A. A.; Banerjee I.; Barac A.; Bardhan M.; Barone-Adesi F.; Barqawi H. J.; Barrow A.; Baskaran P.; Basu S.; Batiha A.-M. M.; Bedi N.; Belete M. A.; Belgaumi U. I.; Bender R. G.; Bhandari B.; Bhandari D.; Bhardwaj P.; Bhaskar S.; Bhattacharyya K.; Bhattarai S.; Bitaraf S.; Buonsenso D.; Butt Z. A.; Caetano Dos Santos F. L.; Cai J.; Calina D.; Camargos P.; Cámera L. A.; Cárdenas R.; Cevik M.; Chadwick J.; Charan J.; Chaurasia A.; Ching P. R.; Choudhari S. G.; Chowdhury E. K.; Chowdhury F. R.; Chu D.-T.; Chukwu I. S.; Dadras O.; Dagnaw F. T.; Dai X.; Das S.; Dastiridou A.; Debela S. A.; Demisse F. W.; Demissie S.; Dereje D.; Derese M.; Desai H. D.; Dessalegn F. N.; Dessalegni S. A. A.; Desye B.; Dhaduk K.; Dhimal M.; Dhingra S.; Diao N.; Diaz D.; Djalalinia S.; Dodangeh M.; Dongarwar D.; Dora B. T.; Dorostkar F.; Dsouza H. L.; Dubljanin E.; Dunachie S. J.; Durojaiye O. C.; Edinur H. A.; Ejigu H. B.; Ekholuenetale M.; Ekundayo T. C.; El-Abid H.; Elhadi M.; Elmonem M. A.; Emami A.; Engelbert Bain L.; Enyew D. B.; Erkhembayar R.; Eshrati B.; Etaee F.; Fagbamigbe A. F.; Falahi S.; Fallahzadeh A.; Faraon E. J. A.; Fatehizadeh A.; Fekadu G.; Fernandes J. C.; Ferrari A.; Fetensa G.; Filip I.; Fischer F.; Foroutan M.; Gaal P. A.; Gadanya M. A.; Gaidhane A. M.; Ganesan B.; Gebrehiwot M.; Ghanbari R.; Ghasemi Nour M.; Ghashghaee A.; Gholamrezanezhad A.; Gholizadeh A.; Golechha M.; Goleij P.; Golinelli D.; Goodridge A.; Gunawardane D. A.; Guo Y.; Gupta R. D.; Gupta S.; Gupta V. B.; Gupta V. K.; Guta A.; Habibzadeh P.; Haddadi Avval A.; Halwani R.; Hanif A.; Hannan M. A.; Harapan H.; Hassan S.; Hassankhani H.; Hayat K.; Heibati B.; Heidari G.; Heidari M.; Heidari-Soureshjani R.; Herteliu C.; Heyi D. Z.; Hezam K.; Hoogar P.; Horita N.; Hossain M. M.; Hosseinzadeh M.; Hostiuc M.; Hostiuc S.; Hoveidamanesh S.; Huang J.; Hussain S.; Hussein N. R.; Ibitoye S. E.; Ilesanmi O. S.; Ilic I. M.; Ilic M. D.; Imam M. T.; Immurana M.; Inbaraj L. R.; Iradukunda A.; Ismail N. E.; Iwu C. C. D.; Iwu C. J. Global Mortality Associated with 33 Bacterial Pathogens in 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400 (10369), 2221–2248. 10.1016/S0140-6736(22)02185-7. - DOI - PMC - PubMed
    1. Folliero V.; Franci G.; Dell’Annunziata F.; Giugliano R.; Foglia F.; Sperlongano R.; De Filippis A.; Finamore E.; Galdiero M. Evaluation of Antibiotic Resistance and Biofilm Production among Clinical Strain Isolated from Medical Devices. Int. J. Microbiol. 2021, 2021, 1–11. 10.1155/2021/9033278. - DOI - PMC - PubMed
    1. Silhavy T. J.; Kahne D.; Walker S. The Bacterial Cell Envelope. Cold Spring Harb. Perspect. Biol. 2010, 2 (5), a00041410.1101/cshperspect.a000414. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources