Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jan 18;6(Suppl 2):100402.
doi: 10.1016/j.opresp.2025.100402. eCollection 2024 Oct.

[Sleep Innovation]

[Article in Spanish]
Affiliations
Review

[Sleep Innovation]

[Article in Spanish]
Laura Vigil et al. Open Respir Arch. .

Abstract

Advances in sleep medicine have driven significant improvements in the diagnosis and treatment of sleep disorders such as obstructive sleep apnea (OSA). This disorder affects one billion people worldwide and traditionally, diagnosis is based on polysomnography (PSG), a laborious method that requires specialized personnel. However, the integration of artificial intelligence (AI) in sleep medicine has made it possible to automate the analysis of sleep phases and respiratory events with high accuracy.Machine learning algorithms and neural networks have proven to be effective in automatic sleep coding, with hit rates comparable to those of human experts. These advances make it possible to improve the efficiency of sleep labs and to personalize OSA treatment. In addition, techniques such as cluster analysis are used to identify symptomatic patterns and phenotypes, which improves understanding of OSA pathophysiology and optimizes CPAP treatment.However, implementation of AI in hospitals faces technological, ethical, and legal barriers. Challenges include data quality, patient privacy, and the need for specialized personnel. Despite these obstacles, AI and Big Data have the potential to transform medical care for sleep disorders, improving both diagnosis and treatment adherence, provided regulatory and cultural barriers are overcome.

Los avances en la medicina del sueño han impulsado mejoras significativas en el diagnóstico y tratamiento de trastornos del sueño como la apnea obstructiva del sueño (AOS). Este trastorno afecta a mil millones de personas en todo el mundo, y tradicionalmente el diagnóstico se basa en la polisomnografía (PSG), un método laborioso que requiere personal especializado. Sin embargo, la integración de la inteligencia artificial (IA) en la medicina del sueño ha permitido automatizar el análisis de las fases del sueño y de los eventos respiratorios con alta precisión.

Los algoritmos de aprendizaje automático y las redes neuronales han demostrado ser efectivos en la codificación automática del sueño, con tasas de acierto comparables a las de los expertos humanos. Estos avances permiten mejorar la eficacia de los laboratorios del sueño y personalizar el tratamiento de la AOS. Además, técnicas como el análisis de clústeres se utilizan para identificar patrones sintomáticos y fenotipos, lo que mejora la comprensión de la fisiopatología de la AOS y optimiza el tratamiento con CPAP.

Sin embargo, la implementación de la IA en los hospitales se enfrenta a barreras tecnológicas, éticas y legales. Los desafíos incluyen la calidad de los datos, la privacidad del paciente y la necesidad de personal especializado. A pesar de estos obstáculos, la IA y el Big Data tienen el potencial de transformar la atención médica de los trastornos del sueño, mejorando tanto el diagnóstico como la adherencia al tratamiento, siempre que se superen las barreras regulatorias y culturales.

Keywords: Artificial intelligence; Machine learning; Sleep apnea.

PubMed Disclaimer

References

    1. Benjafield A.V., Ayas N.T., Eastwood P.R., Heinzer R., Ip M.S.M., Morrell M.J., et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: A literature-based analysis. Lancet Respir Med. 2019;7:687–698. doi: 10.1016/S2213-2600(19)30198-5. PMID: 31300334. - DOI - PMC - PubMed
    1. Mediano O., González Mangado N., Montserrat J.M., Luz Alonso-Álvarez M., Almendros I., Alonso-Fernández A., et al. Documento internacional de consenso sobre apnea obstructiva del sueño. Arch Bronconeumol. 2022;58:52–68. - PubMed
    1. Goldstein C.A., Berry R.B., Kent D.T., Kristo D.A., Seixas A.A., Redline S., et al. Artificial intelligence in sleep medicine: An American Academy of Sleep Medicine position statement. J Clin Sleep Med. 2020;16:605–607. - PMC - PubMed
    1. Bazoukis G., Bollepalli S.C., Chung C.T., Li X., Tse G., Bartley B.L., et al. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med. 2023;19:1337–1363. - PMC - PubMed
    1. De Chazal P., Sutherland K., Cistulli P.A. Advanced polysomnographic analysis for OSA: A pathway to personalized management? Respirology. 2020;25:251–258. doi: 10.1111/resp.13564. - DOI - PubMed

LinkOut - more resources