Comparative transcriptomics of susceptible and resistant Cucumis metuliferus upon Meloidogyne incognita infection
- PMID: 40029419
- DOI: 10.1007/s00425-025-04649-6
Comparative transcriptomics of susceptible and resistant Cucumis metuliferus upon Meloidogyne incognita infection
Abstract
Comparative transcriptomics has identified several candidate genes contributing to the resistance of Cucumis metuliferus against Meloidogyne incognita. The Southern root-knot nematode (Meloidogyne incognita) is a significant threat to Cucurbitaceae crops. The African horned melon (Cucumis metuliferus), a wild relative, exhibits high resistance to this nematode. To explore the resistance mechanism, phenotypic analyses were conducted on a susceptible inbred line (CM27) and a resistant inbred line (CM3). CM3 exhibited enhanced root biomass and significantly higher resistance compared to CM27, with poor nematode development observed in CM3 roots. Transcriptomic profiling at multiple post-infection time points revealed 2243 and 3700 differentially expressed genes (DEGs) in CM3 and CM27, respectively. Among these, the top ten DEGs upregulated exclusively in CM3 were functionally analyzed using virus-induced gene silencing (VIGS). Silencing of EVM0019904 or EVM0017058 in CM3 led to susceptibility to M. incognita. These findings provide novel insights into the resistance mechanisms of M. incognita in C. metuliferus and offer potential resources for breeding nematode-resistant Cucurbitaceae crops.
Keywords: Cucumis metuliferus; Meloidogyne incognita; Comparative transcriptomics; VIGS.
© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Conflict of interest statement
Declarations. Conflict of interest: The authors declare that they have no conflict of interest.
References
-
- Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Segurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26(8):909–915. https://doi.org/10.1038/nbt.1482 - DOI - PubMed
-
- Abad P, Castagnone-Sereno P, Rosso M-N, Engler JdA, Favery B (2009) Invasion, feeding and development. Root-knot nematodes. CABI Wallingford, UK, pp 163–181. https://doi.org/10.1079/9781845934927.0163 - DOI
-
- Askary TH (2015) Limitations, research needs and future prospects in the biological control of phytonematodes. Biocontrol agents of phytonematodes. CABI Wallingford, UK, pp 446–454. https://doi.org/10.1079/9781780643755.0446 - DOI
-
- Ayala-Doñas A, Cara-García Md, Talavera-Rubia M, Verdejo-Lucas S (2020) Management of soil-borne fungi and root-knot nematodes in cucurbits through breeding for resistance and grafting. Agronomy. https://doi.org/10.3390/agronomy10111641 - DOI
-
- Barcala M, Garcia A, Cubas P, Almoguera C, Jordano J, Fenoll C, Escobar C (2008) Distinct heat-shock element arrangements that mediate the heat shock, but not the late-embryogenesis induction of small heat-shock proteins, correlate with promoter activation in root-knot nematode feeding cells. Plant Mol Biol 66(1–2):151–164. https://doi.org/10.1007/s11103-007-9259-3 - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources