Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 3;8(1):355.
doi: 10.1038/s42003-025-07768-8.

Functional composition of the Amazonian tree flora and forests

Hans Ter Steege  1   2 Lourens Poorter  3 Jesús Aguirre-Gutiérrez  4   5 Claire Fortunel  6 William E Magnusson  7 Oliver L Phillips  8 Edwin Pos  9   10 Bruno Garcia Luize  11 Chris Baraloto  12 Juan Ernesto Guevara  13 María-José Endara  13 Tim R Baker  8 Maria Natalia Umaña  14 Masha van der Sande  3 Maihyra Marina Pombo  15 Matt McGlone  16 Freddie C Draper  17 Iêda Leão do Amaral  15 Luiz de Souza Coelho  15 Florian Wittmann  18   19 Francisca Dionízia de Almeida Matos  15 Diógenes de Andrade Lima Filho  15 Rafael P Salomão  20   21 Carolina V Castilho  22 Marcelo de Jesus Veiga Carim  23 Maria Teresa Fernandez Piedade  19 Daniel Sabatier  6 Jean-François Molino  6 Layon O Demarchi  19 Juan David Cardenas Revilla  15 Jochen Schöngart  19 Mariana Victória Irume  15 Maria Pires Martins  15 José Renan da Silva Guimarães  24 José Ferreira Ramos  15 Olaf S Bánki  25 Adriano Costa Quaresma  18   19 Nigel C A Pitman  26 Carlos A Peres  27 Domingos de Jesus Rodrigues  28 Joseph E Hawes  29 Everton José Almeida  30 Luciane Ferreira Barbosa  30 Larissa Cavalheiro  30 Márcia Cléia Vilela Dos Santos  30 Evlyn Márcia Moraes de Leão Novo  31 Percy Núñez Vargas  32 Thiago Sanna Freire Silva  33 Eduardo Martins Venticinque  34 Angelo Gilberto Manzatto  35 Neidiane Farias Costa Reis  36 John Terborgh  37   38 Katia Regina Casula  36 Euridice N Honorio Coronado  39 Abel Monteagudo Mendoza  32   40 Juan Carlos Montero  15   41 Cintia Rodrigues De Souza  42 Marcus Vinicio Neves de Oliveira  42 Flávia R C Costa  7 Julien Engel  6   12 Ted R Feldpausch  8   43 Nicolás Castaño Arboleda  44 Flávia Machado Durgante  18   19 Charles Eugene Zartman  15 Timothy J Killeen  45 Beatriz S Marimon  46 Ben Hur Marimon-Junior  46 Rodolfo Vasquez  40 Bonifacio Mostacedo  47 Rafael L Assis  48 Dário Dantas do Amaral  21 Hernán Castellanos  49 John Ethan Householder  18 Marcelo Brilhante de Medeiros  50 Marcelo Fragomeni Simon  50 Ana Andrade  51 José Luís Camargo  51 Susan G W Laurance  38 William F Laurance  38 Lorena Maniguaje Rincón  15 Gisele Biem Mori  19   52 Juliana Schietti  15 Thaiane R Sousa  53 Emanuelle de Sousa Farias  54 Maria Aparecida Lopes  55 José Leonardo Lima Magalhães  56   57 Henrique Eduardo Mendonça Nascimento  15 Helder Lima de Queiroz  58 Caroline C Vasconcelos  59 Gerardo A Aymard C  60 Roel Brienen  8 Pâmella Leite de Sousa Assis  61 Darlene Gris  61 Karoline Aparecida Felix Ribeiro  61 Pablo R Stevenson  62 Alejandro Araujo-Murakami  63 Bruno Barçante Ladvocat Cintra  64   65 Yuri Oliveira Feitosa  59 Hugo F Mogollón  66 Miles R Silman  67 Leandro Valle Ferreira  21 José Rafael Lozada  68 James A Comiskey  69   70 José Julio de Toledo  71 Gabriel Damasco  72 Roosevelt García-Villacorta  73   74 Aline Lopes  19   75 Marcos Rios Paredes  76 Alberto Vicentini  7 Ima Célia Guimarães Vieira  21 Fernando Cornejo Valverde  77 Alfonso Alonso  70 Luzmila Arroyo  63 Francisco Dallmeier  78   79 Vitor H F Gomes  80   81 William Nauray Huari  32 David Neill  82 Maria Cristina Peñuela Mora  83 Daniel P P de Aguiar  84   85 Flávia Rodrigues Barbosa  28 Yennie K Bredin  86   87 Rainiellen de Sá Carpanedo  28 Fernanda Antunes Carvalho  7   88 Fernanda Coelho de Souza  7   8 Kenneth J Feeley  89   90 Rogerio Gribel  15 Torbjørn Haugaasen  86 Janaína Costa Noronha  28 Marcelo Petratti Pansonato  15 John J Pipoly 3rd  91   92 Jos Barlow  93 Erika Berenguer  4   93 Izaias Brasil da Silva  94 Joice Ferreira  57 Maria Julia Ferreira  95 Paul V A Fine  96 Marcelino Carneiro Guedes  97 Carolina Levis  98 Juan Carlos Licona  41 Boris Eduardo Villa Zegarra  99 Vincent Antoine Vos  100 Carlos Cerón  101 Émile Fonty  6   102 Terry W Henkel  103 Isau Huamantupa-Chuquimaco  104 Marcos Silveira  105 Juliana Stropp  106 Raquel Thomas  107 Doug Daly  108 Kyle G Dexter  109 William Milliken  110 Guido Pardo Molina  100 Toby Pennington  43   111 Bianca Weiss Albuquerque  19 Wegliane Campelo  71 Alfredo Fuentes Claros  112   113 Bente Klitgaard  39 José Luis Marcelo Pena  114 Luis Torres Montenegro  26 J Sebastián Tello  112 Corine Vriesendorp  26 Jerome Chave  115 Anthony Di Fiore  116   117 Renato Richard Hilário  71 Luciana de Oliveira Pereira  43 Juan Fernando Phillips  118 Gonzalo Rivas-Torres  117   119 Tinde R van Andel  120   121 Patricio von Hildebrand  122 William Balee  123 Edelcilio Marques Barbosa  15 Luiz Carlos de Matos Bonates  15 Hilda Paulette Dávila Doza  76 Ricardo Zárate Gómez  124 George Pepe Gallardo Gonzales  76 Therany Gonzales  125 Bruce Hoffman  126 André Braga Junqueira  127 Yadvinder Malhi  4 Ires Paula de Andrade Miranda  15 Linder Felipe Mozombite Pinto  76 Adriana Prieto  128 Agustín Rudas  128 Ademir R Ruschel  57 Natalino Silva  129 César I A Vela  130 Egleé L Zent  131 Stanford Zent  131 Angela Cano  62   132 Yrma Andreina Carrero Márquez  133 Diego F Correa  62   134 Janaina Barbosa Pedrosa Costa  97 Bernardo Monteiro Flores  98 David Galbraith  8 Milena Holmgren  135 Michelle Kalamandeen  136 Guilherme Lobo  137 Tony Mori Vargas  138 Marcelo Trindade Nascimento  139 Alexandre A Oliveira  140 Hirma Ramirez-Angulo  141 Maira Rocha  19 Veridiana Vizoni Scudeller  142 Geertje van der Heijden  143 Emilio Vilanova Torre  141   144 Cláudia Baider  140   145 Henrik Balslev  146 Sasha Cárdenas  62 Luisa Fernanda Casas  62 William Farfan-Rios  32   67 Reynaldo Linares-Palomino  70 Casimiro Mendoza  147   148 Italo Mesones  96 Germaine Alexander Parada  63 Armando Torres-Lezama  141 Daniel Villarroel  63   149 Roderick Zagt  150 Miguel N Alexiades  151 Edmar Almeida de Oliveira  46 Riley P Fortier  89 Karina Garcia-Cabrera  67 Lionel Hernandez  49 Walter Palacios Cuenca  152 Susamar Pansini  36 Daniela Pauletto  153 Freddy Ramirez Arevalo  138 Adeilza Felipe Sampaio  36 Elvis H Valderrama Sandoval  138   154 Luis Valenzuela Gamarra  40 Aurora Levesley  8 Georgia Pickavance  8
Affiliations

Functional composition of the Amazonian tree flora and forests

Hans Ter Steege et al. Commun Biol. .

Abstract

Plants cope with the environment by displaying large phenotypic variation. Two spectra of global plant form and function have been identified: a size spectrum from small to tall species with increasing stem tissue density, leaf size, and seed mass; a leaf economics spectrum reflecting slow to fast returns on investments in leaf nutrients and carbon. When species assemble to communities it is assumed that these spectra are filtered by the environment to produce community level functional composition. It is unknown what are the main drivers for community functional composition in a large area such as Amazonia. We use 13 functional traits, including wood density, seed mass, leaf characteristics, breeding system, nectar production, fruit type, and root characteristics of 812 tree genera (5211 species), and find that they describe two main axes found at the global scale. At community level, the first axis captures not only the 'fast-slow spectrum', but also most size-related traits. Climate and disturbance explain a minor part of this variance compared to soil fertility. Forests on poor soils differ largely in terms of trait values from those on rich soils. Trait composition and soil fertility exert a strong influence on forest functioning: biomass and relative biomass production.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Trait space of 353 Amazonian tree genera on 2253 plots with genus level identification.
Only genera with complete trait data were used (353 genera, of the 812 in our plots). PC1 has an Eigenvalue of 2.98 and represents the leaf economic spectrum (SLA, N, P, C:N). PC2 (Eigenvalue 1.62) represents the stature-recruitment trade-off (WD, SM) and is strongly linked to short lived pioneers (SLP, negatively) and old-growth species and maximum diameter (OGS, Max, positively). Legend: Colours indicate the probability of trait combinations in the trait space defined by the PCA (red = high probability; yellow = low probability). Contour lines indicate 0.99, 0.50, and 0.25 quantiles of the probability distribution. N leaf nitrogen concentration, C:N ratio of leaf carbon to leaf nitrogen, SLA specific leaf area, SM seed mass, P leaf phosphorus concentration, AA aluminium accumulation, Nfix atmospheric N-fixation, WD wood density (overlapping with OGS), C leaf carbon content, FF fleshy fruit, EM ectomycorrhiza, Her hermaphroditic, Nectar nectar producing. Life histories (dark green): OGS old-growth species, LLP long-lived pioneer, SLP short-lived pioneer; Max, maximum diameter. For description of the traits and units, see Supplementary box 1.
Fig. 2
Fig. 2. Trait space of 2054 tree communities with traits at genus and species level.
PC1 has an Eigenvalue of 4.39 (explained variance 33.3%), and appears to be related to the ‘leaf economic spectrum’ (SLA, N, P, C:N) but also WD, SMC, and hermaphroditism contribute to this axis. Life-history forms SLP and LLP are also positively correlated with PC1. Environmental factors sum of bases and pH are strongly positively correlated to this axis. PC2 is linked to nodulation of Fabaceae and fleshy fruits and poorly correlated to the climatic factors used. Legend: Colours indicate the probability of trait combinations in the trait space defined by the PCA (red = high probability; yellow = low probability). Contour lines indicate 0.99, 0.50, and 0.25 quantiles of the probability distribution. N leaf nitrogen concentration, C:N ratio of leaf carbon to leaf nitrogen, SLA specific leaf area, SM seed mass, P leaf phosphorus concentration, AA aluminium accumulation, Nfix atmospheric N-fixation, WD wood density, C leaf carbon content, FF fleshy fruit, EM ectomycorrhiza, Her hermaphroditic, Nectar nectar producing. Life histories (dark green): OGS old-growth species, LLP long-lived pioneer, SLP short-lived pioneer; Environmental variables: Annual, Annual precipitation (Bioclim12); CWD cumulative water deficit, CAPE Convective atmospheric potential energy, WTC Windthrow count; PZ podzol, white-sand forest, FL flooded (swamp forest; várzea; igapó); pH, soil acidity; SB, log(sum of bases); G.prob, geoglyph probability; DSpp, domesticated species. Note that SLA, N and P are overlapping, as are DSpp, G.prob, pH and SB. For description of the traits and units, see Supplementary box 1.
Fig. 3
Fig. 3. PC1 plot scores of community trait values related to forest types and Amazon regions. a ‘The fast-slow forest spectrum’ as determined by forest type.
‘The fast-slow forest spectrum’ is associated mostly with the economic spectra, and the order of forest types appears determined by general soil fertility (see Supplementary Fig. 29a). Note the very high value of the poorest soils in Amazonia (lowest sum of bases (Supplementary Fig. 29a), white sand podzol (PZ). b‘The fast-slow forest spectrum’ as determined by Amazonian region. The order of regions also appears follow general soil fertility (Supplementary Fig 29b). From rich to poor: TFPB terra firme Pebas Formation, VA várzea, SW swamp forest, TFBS terra firme Brazilian Shield, IG igapó, TFGS terra firme Guiana Shield, PZ white sand forest, SWA south west Amazonia, NWA northwest Amazonia, SA southern Amazonia, EA eastern Amazonia, CA central Amazonia, GS Guiana Shield. Colours follow the major forest type (SWA, NWA: TFPB; SA: TFBS; CA, GS: TFGS; EA: mix of TFBS, TFGS). Red dotted line: mean of all data.
Fig. 4
Fig. 4. Functional characterisation of Amazonian forests.
Forest with positive score on the ‘fast-slow forest spectrum’ (yellow, beige) are forests at the “slow”, tough side of economic spectra (high CN ratio, low SLA, N and P), high wood density, low numbers of fleshy fruit, high levels of hermaphroditism, high in nectar producing individuals, occurring mainly on low to very low nutrient soils. Forests with negative score on the ‘fast-slow forest spectrum’ (blue, purple) are the opposite in terms of trait values and occur mainly on nutrient rich soils. The isolines divide Amazonia into three regions, tough-slow (PC1 > 0.65, yellow-beige), soft-fast (PC1 < -1.2 blue-purple) and intermediate (green). Colouring the plots based on their PC1 scores shows that their colour mostly matches the area colour, except if they are white sand plots (PZ) in a green area, and várzea plots (blue dots) in green and yellow areas. Note that the legend has been truncated at 2 standard deviations. Red polygon: Amazonian Biome limit. Base map source (country.shp, rivers.shp), ESRI (http://www.esri.com/data/basemaps, © Esri, DeLorme Publishing Company).
Fig. 5
Fig. 5. The ‘fast-slow forest spectrum’ and soil fertility as potential drivers of aboveground biomass and biomass productivity.
a ‘Slow’ forests (positive value) have much higher above ground woody biomass (AWB) than ‘fast’ forests (negative values) b Absolute above ground woody productivity (AGWP) does not vary significantly with the ‘fast-slow forest spectrum’. c Biomass produced per biomass standing (= Relative AGWP [100*AGWP/AGB]) is highest in ‘fast’ forests (negative values for slow-fast forest spectrum). d Relative AGWP is positively correlated with predicted sum of bases. Red lines indicate 95% confidence intervals. Biomass data from sources,,. Colours: Red, terra firme Pebas formation; brown, terra firme Brazilian Shield; orange, terra firme Guiana Shield; yellow, white sand forest; purple, swamp forest; light blue, várzea.

References

    1. Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am Nat108, 499–506 (1974).
    1. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature428, 821 (2004). - PubMed
    1. Díaz, S. et al. The global spectrum of plant form and function. Nature529, 167–171 (2016). - PubMed
    1. Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol Lett12, 351–366 (2009). - PubMed
    1. Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci Adv6, eaba3756 (2020). - PMC - PubMed

LinkOut - more resources