Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May 15;85(10):1842-1856.
doi: 10.1158/0008-5472.CAN-24-2982.

Macrophage-Derived Itaconate Suppresses Dendritic Cell Function to Promote Acquired Resistance to Anti-PD-1 Immunotherapy

Affiliations

Macrophage-Derived Itaconate Suppresses Dendritic Cell Function to Promote Acquired Resistance to Anti-PD-1 Immunotherapy

Xiao Yang et al. Cancer Res. .

Abstract

Adaptive resistance to immunotherapy remains a significant challenge in cancer treatment. The reshaping of the tumor immune microenvironment in response to therapeutic pressures is a crucial factor contributing to this resistance. In this study, by comprehensive metabolic profiling of tumor tissues, we identified elevated itaconate in response to anti-PD-1 therapy as an adaptive resistance mechanism that promoted immune escape and tumor progression. CD8+ T-cell-derived IFNγ induced a significant upregulation of cis-aconitate decarboxylase 1 (ACOD1) in macrophages via the JAK-STAT1 pathway, thereby rewiring the Krebs cycle toward itaconate production. In murine models, macrophage-specific deletion of Acod1 increased the antitumor efficacy of anti-PD-1 therapy and improved survival. Additionally, itaconate and its derivative, 4-octyl itaconate, suppressed the tumor antigen presentation and cross-priming ability of dendritic cells, resulting in the impairment of antigen-specific T-cell antitumor responses. In summary, these findings identify an IFNγ-dependent immunometabolic mechanism of anti-PD-1 resistance, providing a promising strategy for combination therapy. Significance: Elevated itaconate production by macrophages induced by IFNγ is a critical negative feedback immunoregulatory metabolic response to anti-PD-1 immunotherapy that inhibits the cross-priming function of dendritic cells and confers immunotherapy resistance.

PubMed Disclaimer

MeSH terms

LinkOut - more resources