Biomimetic peroxisome targets myocardial injury and promotes heart repair and regeneration
- PMID: 40037208
- DOI: 10.1016/j.biomaterials.2025.123214
Biomimetic peroxisome targets myocardial injury and promotes heart repair and regeneration
Abstract
Heart ischemic injury predominately causes mitochondrial dysfunction, leading to the accumulation of ROS and lactate. The ROS-associated DNA damage response (DDR) contributes to myocardial cell cycle arrest and the inhibition of proliferation, while lactate accumulation is often accompanied by a high risk of acute death. In this study, to restore myocardial metabolism and regenerate the heart, we established a biomimetic peroxisome by loading the Mn3O4 nanozyme into mesenchymal stem cell-derived extracellular vesicles (MSC-EV (Mn@EV)). This setup mimics the peroxidases of peroxisome to catalyze ROS, and inhibit DDR. Next, the Mn@EV was immobilized with lactate oxidase (LOX) after encompassed platelet membrane to obtain biomimetic peroxisome (Mn@LPEV). This mimics the substrate-oxidizing function to detoxify lactate and prevent death. Supported by its biomimetic and lactate-response delivery system, our biomimetic peroxisome effectively targeted deep tissues in the hearts of I/R mice, achieving a 4-fold increase in targeting compared with control vesicles. It maintained myocardial redox homeostasis by scavenging ROS and lactate, inhibiting DDR pathway, promoting myocardial regeneration, reducing acute mortality and fibrosis remodeling, accelerating immunomodulation and angiogenesis, and significantly protecting heart function.
Keywords: Biomimetic; DDR; Heart regeneration; Nanozyme; Peroxisome.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
