Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 16:152:114342.
doi: 10.1016/j.intimp.2025.114342. Epub 2025 Mar 3.

Inhibition of Drp1-mediated mitochondrial fission by P110 ameliorates renal injury in diabetic nephropathy

Affiliations

Inhibition of Drp1-mediated mitochondrial fission by P110 ameliorates renal injury in diabetic nephropathy

Ruchi Yue et al. Int Immunopharmacol. .

Abstract

Diabetic nephropathy (DN) is a leading cause of end-stage renal disease, characterized by progressive renal injury driven by mitochondrial dysfunction and metabolic reprogramming. Excessive mitochondrial fission, mediated by dynamin-related protein 1 (Drp1), contributes to mitochondrial fragmentation and cellular injury in the diabetic kidney. Here, we investigate the therapeutic potential of P110, a selective inhibitor of Drp1-mediated mitochondrial fission, in experimental models of DN. We demonstrate that P110 effectively reduces mitochondrial fragmentation and restores metabolic balance in renal tubular cells from DN patients. In streptozotocin (STZ)-induced diabetic mice and db/db mice, P110 treatment significantly mitigates renal injury, as evidenced by decreased fibrosis, inflammation, and podocyte injury, despite having no impact on hyperglycemia or body weight loss. Mechanistically, P110 disrupts the interaction between Drp1 and Fis1, thereby inhibiting mitochondrial fission, and activates the AMPK/PGC-1α/TFAM pathway, promoting mitochondrial biogenesis and function. Our findings suggest that targeting mitochondrial fission with P110 offers a novel therapeutic strategy for preventing and treating DN, potentially addressing a critical gap in current diabetic nephropathy management.

Keywords: Diabetic nephropathy; Drp1; Fis1; Metabolic reprogramming; Mitochondria.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms