Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 May;306(Pt 3):141659.
doi: 10.1016/j.ijbiomac.2025.141659. Epub 2025 Mar 2.

Nano zero-valent iron driven sodium alginate/poly (acrylic acid) composite hydrogel powder for rapid hemostasis and wound healing

Affiliations

Nano zero-valent iron driven sodium alginate/poly (acrylic acid) composite hydrogel powder for rapid hemostasis and wound healing

Hongyan Zhang et al. Int J Biol Macromol. 2025 May.

Abstract

Uncontrollable bleeding resulting from warfare, traffic accidents, and various high-risk industries poses a serious issue. In this study, we develop a nano-zero-valent iron (nZVI)-driven sodium alginate (SA)/polyacrylic acid (PAA) composite hydrogel (SA/PAA/nZVI, SPI), which is subsequently fabricated into a powder to achieve rapid hemostasis and promote wound healing. The redox system comprising nZVI/ammonium persulfate (APS) efficiently generates significant quantities of free radicals and Fe3+ under both room and low temperatures (4 °C), thereby significantly accelerating hydrogel formation. The SPI hydrogel exhibits excellent mechanical properties and adhesion due to its interpenetrating network structure, enabling it to resist various degrees of bending and folding. Notably, the SPI hydrogel powder, obtained through drying and grinding processes, possesses self-gelling properties and can effectively adhere to wet tissues. This is attributed to the strong hygroscopic properties of the hydrogel and the abundant dynamic bonds within its structure. These powders can rapidly absorb significant volumes of blood, including blood cells and coagulation factors, and demonstrate superior hemostatic efficacy over commercial chitosan powders (CCS) in diverse bleeding scenarios. Furthermore, the SPI hydrogel powder markedly improved skin wound healing compared to CCS in a rat full-thickness skin wound model. In conclusion, the SA/PAA composite hydrogel, driven by nZVI, demonstrates significant potential for facilitating hemostasis and wound healing.

Keywords: Composite hydrogel; Nano zero-valent iron; Rapid hemostasis; Sodium alginate; Wound healing.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

LinkOut - more resources