Targeting the pyruvate dehydrogenase kinase/pyruvate dehydrogenase axis modulates neutrophil and smooth muscle cell pathological responses and prevents abdominal aortic aneurysm formation
- PMID: 40037693
- DOI: 10.1093/cvr/cvaf032
Targeting the pyruvate dehydrogenase kinase/pyruvate dehydrogenase axis modulates neutrophil and smooth muscle cell pathological responses and prevents abdominal aortic aneurysm formation
Abstract
Aims: Abdominal aortic aneurysm (AAA) is a life-threatening condition where inflammation plays a key role. Currently, AAA treatment relies exclusively on surgical interventions, and no guideline drug therapy to prevent aneurysm growth or rupture is available. Pharmacological reprogramming of immune cell metabolism, through the modulation of the pyruvate dehydrogenase kinase/pyruvate dehydrogenase (PDK/PDH) axis, has been identified as an attractive strategy to combat inflammation. Here, we aimed, for the first time, to investigate the role of the PDK/PDH axis in AAA and its potential as a therapeutic target.
Methods and results: Analysis of three separate transcriptome data sets revealed that the expression of PDK isoenzymes is skewed in human AAA. Thus, human AAA homogenates showed increased levels of phosphorylated PDH-Ser293 and lactate compared with controls, confirming a metabolic deviation. In mice subjected to porcine pancreatic elastase (PPE)-induced AAA, treatment with dichloroacetate (DCA), a pan inhibitor of PDK isoenzymes, prevented aortic dilation, reducing the increase in inner aortic diameter by ∼58% compared with controls. Further analysis showed that DCA treatment upregulated contractile vascular smooth muscle cell (VSMC)-related genes and downregulated neutrophil-related genes in the mice. In line with the previous, PDK inhibition prevented elastin breakdown, preserved aortic alpha-smooth muscle actin and collagen expression, and decreased neutrophil infiltration and neutrophil extracellular trap (NET) release. Thus, treating VSMC with DCA or PDK1-siRNA revealed that the PDK/PDH axis regulates their dedifferentiation, influencing contractile gene expression and proliferation. Moreover, we found that DCA-induced PDK inhibition inhibited neutrophil NET release in vivo and in vitro.
Conclusion: We show that the PDK/PDH axis is skewed in human AAA. Through the inhibition of PDK, in vitro and in vivo, we demonstrated that the PDK/PDH axis is a key regulator of vascular- and neutrophil-associated pathological responses with AAA formation. Our study pinpoints immunometabolic reprogramming using PDK inhibitors as an attractive strategy to fight AAA disease.
Keywords: Aneurysm; Immunometabolism; Inflammation; PDK; Therapy.
© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
Conflict of interest statement
Conflict of interest: none declared.
MeSH terms
Substances
Grants and funding
- 0064142/Novo Nordisk Foundation
- 0075258/Novo Nordisk Foundation
- 2023-0066/Simon Fougner Hartmanns Familiefond
- University of Southern Denmark
- 101095413/European Union's Horizon Europe Research and Innovation Framework programme for Health
- European Union
- European Health and Digital Executive Agency
- NNF20SA0067242/Danish Cardiovascular Academy (DCA)
- The Danish Heart Foundation
- Pla Estratègic de Recerca i Innovació en Salut (PERIS)
- SLT017/20/000100/Catalan Department of Health
- ISCIII Spanish Health Institute
- CPII22/00007/Instituto de Salud Carlos III
- European Social Fund
- Spanish Agency of Investigation
- PID2019-109844RB-I00/Agencia Estatal de Investigación
- PID2023-149864OB-I00/Agencia Estatal de Investigación
- 2023/343031/Fundació Marató de TV3
LinkOut - more resources
Full Text Sources
Miscellaneous
