Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Jul:2024:1-4.
doi: 10.1109/EMBC53108.2024.10782579.

Computational analysis of light diffusion and thermal effects during Transcranial Photobiomodulation

Computational analysis of light diffusion and thermal effects during Transcranial Photobiomodulation

Alexander R Guillen et al. Annu Int Conf IEEE Eng Med Biol Soc. 2024 Jul.

Abstract

Transcranial Photobiomodulation (tPBM) is a non-invasive procedure where light is applied to the scalp to modulate underlying brain activity. tPBM has recently attracted immense interest as a potential therapeutic option for a range of neurological and neuropsychiatric conditions. The common technological questions related to this modality are extent of light penetration and associated scalp and brain temperature increases. Limited computational efforts to quantify these aspects are restricted to simplified models. We consider here a 3D high-resolution (1 mm) and anatomically realistic model to simulate light propagation and thermal effects. We consider a dose of 100 mW /cm2 and use a single light source targeting the F3 location based on 10-20 EEG. Our simulations reveal that while the induced irradiance distribution largely mimics the shape and extent of the source, there is a blurring effect at the brain. This diffusion is attributed to the scalp, skull, and compounded at the surface of the cerebrospinal fluid. Around 1% of the injected irradiance reaches the gray matter. As expected and aligned with previous efforts, the scalp accounts for the greatest loss (~65%). We observe a nominal 0.38 °C rise in the scalp in regions directly underneath the source. There is negligible temperature rise in the brain. Finally, irradiance reduces to 0.01 mW /cm2 at ~13.5 cm from the scalp surface.

PubMed Disclaimer

LinkOut - more resources