Correlation Between Fecal Microbiota and Corticosteroid Responsiveness in Primary Immune Thrombocytopenia: an Exploratory Study
- PMID: 40040609
- PMCID: PMC12165022
- DOI: 10.1002/advs.202410417
Correlation Between Fecal Microbiota and Corticosteroid Responsiveness in Primary Immune Thrombocytopenia: an Exploratory Study
Abstract
Corticosteroids (CSs) are the initial therapy for immune thrombocytopenia (ITP); however, their efficacy is not adequately predicted. As a novel biomarker, the composition of the gut microbiota is non-invasively tested and altered in patients with ITP. This study aims to develop a predictive model that leverages gut microbiome data to predict the CS response in patients with ITP within the initial four weeks of treatment. Metagenomic sequencing is performed on fecal samples from 212 patients with ITP, 152 of whom underwent CS treatment and follow-up. Predictive models are trained using six machine-learning algorithms, integrating clinical indices and gut microbiome data. The support vector machine (SVM) algorithm-based model has the highest accuracy (AUC = 0.80). This model utilized a comprehensive feature set that combined clinical data (including sex, age, duration, platelet count, and bleeding scales) with selected microbial species (including Bacteroides ovatus, Bacteroides xylanisolvens, and Parabacteroides gordonii), alpha diversities, KEGG pathways, and microbial modules. This study will provide new ideas for the prediction of clinical CS efficacy, enabling informed decision-making regarding the initiation of CS or personalized treatment in patients with ITP.
Keywords: biomarker; gut microbiome; gut microbiota; immune thrombocytopenia; machine learning.
© 2025 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures






References
-
- a) Provan D., Stasi R., Newland A. C., Blanchette V. S., Bolton‐Maggs P., Bussel J. B., Chong B. H., Cines D. B., Gernsheimer T. B., Godeau B., Grainger J., Greer I., Hunt B. J., Imbach P. A., Lyons G., McMillan R., Rodeghiero F., Sanz M. A., Tarantino M., Watson S., Young J., Kuter D. J., Blood 2010, 115, 168; - PubMed
- b) Neunert C., Lim W., Crowther M., Cohen A., Solberg L., Crowther M. A., Blood 2011, 117, 4190. - PubMed
-
- Cooper N., Ghanima W., N. Engl. J. Med. 2019, 381, 945. - PubMed
-
- Provan D., Arnold D. M., Bussel J. B., Chong B. H., Cooper N., Gernsheimer T., Ghanima W., Godeau B., Gonzalez‐Lopez T. J., Grainger J., Hou M., Kruse C., McDonald V., Michel M., Newland A. C., Pavord S., Rodeghiero F., Scully M., Tomiyama Y., Wong R. S., Zaja F., Kuter D. J., Blood Adv. 2019, 3, 3780. - PMC - PubMed
-
- Zaja F., Vianelli N., Volpetti S., Battista M. L., Defina M., Palmieri S., Bocchia M., Medeot M., De Luca S., Ferrara F., Isola M., Baccarani M., Fanin R., Eur. J. Haematol. 2010, 85, 329. - PubMed
-
- Huang Q.‐S., Liu Y., Wang J.‐B., Peng J., Hou M., Liu H., Feng R., Wang J.‐W., Xu L.‐P., Wang Y., Huang X.‐J., Zhang X.‐H., Lancet Haematol. 2021, 8, e688. - PubMed
MeSH terms
Substances
Grants and funding
- 2023YFC2507803/Key Technologies Research and Development Program
- 82300149/National Natural Science Foundation of China
- 82130008/National Natural Science Foundation of China
- 82230004/National Natural Science Foundation of China
- 82350004/National Natural Science Foundation of China
- 82430006/National Natural Science Foundation of China
- 2024M761208/China Postdoctoral Science Foundation
- 2023ZB182/Department of Human Resources and Social Security of Jiangsu Province
- 2022-1-4082/Capital Health Research and Development of Special Fund
- 7242154/Natural Science Foundation of Beijing Municipality
- 7232188/Natural Science Foundation of Beijing Municipality
- 71003Y3035/Peking University Medicine
LinkOut - more resources
Full Text Sources
Medical
Research Materials