Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 14;11(3):762-772.
doi: 10.1021/acsinfecdis.4c01047. Epub 2025 Mar 5.

Aptamer-Based Diagnosis for Plasmodium vivax Specific Malaria

Affiliations

Aptamer-Based Diagnosis for Plasmodium vivax Specific Malaria

Mohd Shoeb Alam et al. ACS Infect Dis. .

Abstract

Malaria, caused by a protozoan parasite of the genus Plasmodium, is a severe infectious disease with life-threatening consequences that has burdened mankind for centuries. Although Plasmodium falciparum (P. falciparum) malaria is more prevalent globally than Plasmodium vivax (P. vivax) malaria, India bears the largest burden of P. vivax malaria, with over 3.6 million cases accounting for ∼48% of global P. vivax malaria cases. Existing detection methods for P. vivax malaria are costly or tedious or have low accuracy. To address the need for a specific diagnostic assay for P. vivax, we generated aptamers specific to Plasmodium vivax tryptophan-rich antigen (PvTRAg). We employed them in an aptamer-linked immobilized sorbent assay (ALISA) to detect P. vivax malaria infections. The two most specific aptamers for PvTRAg, identified as Apt_14 and Apt_16, were obtained using the Systematic Evolution of Ligands by Exponential Enrichment. The dissociation constant (KD) values of Apt_14 and Apt_16 were 1.9 and 1.2 nM, respectively, indicating high affinity to PvTRAg. The limit of detection for both aptamers was found to be 2.5 nM. During clinical validation, the sensitivity of 96% and 84% was obtained with Apt_14- and Apt_16-based ALISA with 100% specificity. The aptamers demonstrated nonsignificant cross-reactivity with other nonmalarial antigens and PvTRAg homologues along with a high level of selectivity for PvTRAg over P. falciparum antigens and various other antigens. Altogether, our findings confirm the effectiveness of DNA aptamers for the accurate diagnosis of P. vivax malaria and lay the groundwork for developing an aptamer-based diagnostic assay for malaria.

Keywords: Plasmodium vivax; PvTRAg; aptamer; diagnosis; malaria.

PubMed Disclaimer

MeSH terms

LinkOut - more resources