Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr 1;328(4):C1234-C1246.
doi: 10.1152/ajpcell.00875.2024. Epub 2025 Mar 7.

ChREBP mediates metabolic remodeling in FBP1-deficient liver

Affiliations
Free article

ChREBP mediates metabolic remodeling in FBP1-deficient liver

Chen-Ma Wang et al. Am J Physiol Cell Physiol. .
Free article

Abstract

The deficiency of fructose-1,6-bisphosphatase 1 (FBP1), a key enzyme of gluconeogenesis, causes fatty liver. However, its underlying mechanism and physiological significance are not fully understood. Here we demonstrate that carbohydrate response element-binding protein (ChREBP) mediates lipid metabolic remodeling and promotes progressive triglyceride accumulation against metabolic injury in adult FBP1-deficient liver. Inducible liver-specific deletion of Fbp1 gene caused progressive hepatomegaly and hepatic steatosis, with a marked increase in hepatic de novo lipogenesis (DNL) as well as a decrease in plasma β-hydroxybutyrate levels. Notably, FBP1 deficiency resulted in a persistent activation of ChREBP and its target genes involved in glycolysis, lipogenesis, and fatty acid oxidation, even under fasting conditions. Furthermore, liver-specific ChREBP disruption could markedly restore the phenotypes of enhanced DNL and triglyceride accumulation in FBP1-deficient liver but exacerbated its hepatomegaly and liver injury, which was associated with remarkable energy deficit, impaired mammalian target of rapamycin (mTOR) activation, and increased oxidative stress. Furthermore, metabolomics analysis revealed a robust elevation of phosphoenolpyruvate, phosphoglycerates, phospholipids, and ceramides caused by ChREBP deletion in FBP1-deficient liver. Put together, these results suggest that overactivation of ChREBP pathway mediates liver metabolic remodeling in the absence of FBP1, which contributes to the pathogenesis of progressive hepatic steatosis and provides a protection against liver injury. Thus, our findings point to a beneficial role of ChREBP in metabolic remodeling in the context of excessive gluconeogenic intermediates.NEW & NOTEWORTHY FBP1 deficiency in adulthood causes progressive hepatic steatosis due to the overactivation of ChREBP pathway, which enhances lipid synthesis and inhibits fat oxidation. ChREBP-mediated metabolic remodeling protects against liver injury caused by energy deficit and oxidative stress in FBP1-deficient liver.

Keywords: fatty liver; gluconeogenesis; lipogenesis; metabolic remodeling; transcription factor.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources