Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Jun:85:102699.
doi: 10.1016/j.pbi.2025.102699. Epub 2025 Mar 8.

Engineering nitrogen and carbon fixation for next-generation plants

Affiliations
Review

Engineering nitrogen and carbon fixation for next-generation plants

Zehong Zhao et al. Curr Opin Plant Biol. 2025 Jun.

Abstract

Improving plant nitrogen (N) and carbon (C) acquisition and assimilation is a major challenge for global agriculture, food security, and ecological sustainability. Emerging synthetic biology techniques, including directed evolution, artificial intelligence (AI)-guided enzyme design, and metabolic engineering, have opened new avenues for optimizing nitrogenase to fix atmospheric N2 in plants, engineering Rhizobia or other nitrogen-fixing bacteria for symbiotic associations with both legume and nonlegume crops, and enhancing carbon fixation to improve photosynthetic efficiency and source-to-sink assimilate fluxes. Here, we discuss the potential for engineering nitrogen fixation and carbon fixation mechanisms in plants, from rational and AI-driven optimization of nitrogen and carbon fixation cycles. Furthermore, we discuss strategies for modifying source-to-sink relationships to promote robust growth in extreme conditions, such as arid deserts, saline-alkaline soils, or even extraterrestrial environments like Mars. The combined engineering of N and C pathways promises a new generation of crops with enhanced productivity, resource-use efficiency, and resilience. Finally, we explore future perspectives, focusing on the integration of enzyme engineering via directed evolution and computational design to accelerate metabolic innovation in plants.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest All authors declared no conflicts.