Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jul 2;33(7):3073-3085.
doi: 10.1016/j.ymthe.2025.03.003. Epub 2025 Mar 8.

Use of CD19-targeted immune modulation to eradicate AAV-neutralizing antibodies

Affiliations

Use of CD19-targeted immune modulation to eradicate AAV-neutralizing antibodies

Bhavya S Doshi et al. Mol Ther. .

Abstract

Neutralizing antibodies (NAbs) against adeno-associated virus (AAV) represent a significant obstacle to the efficacy of systemic recombinant AAV vector administration or re-administration. While there are some promising preclinical immunomodulation strategies in development, insights into which B cell subsets and compartments maintain persistent AAV NAb may define the optimal eradication strategy. Given the limited success of CD20-directed monotherapy in previous studies, we hypothesized that CD19-directed approaches that extend targeting into the plasma cell compartments may improve AAV NAb eradication. We tested this approach in mice using chimeric antigen receptor T (CAR-T) cells or monoclonal antibodies (mAbs). We observed that combination mAbs targeting CD19, CD22, CD20, or B220 in mice did not eliminate tissue-resident B cells and, correspondingly, did not deplete pre-existing high titer AAV8 NAb. In contrast, CD19 CAR-T therapy eliminated peripheral and tissue-resident B cells and plasma cells and resulted in a marked reduction or eradication of high titer AAV8 NAb that permitted successful transgene expression following systemic AAV8 re-administration in mice. This successful therapeutic approach in mice identifies the population and location of B cells necessary to reduce or eradicate AAV NAb sufficiently to permit successful transgene expression with systemic AAV vector administration.

Keywords: AAV gene therapy; CAR-T; immunogenicity; neutralizing antibodies; re-administration.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests B.S.D., V.G.B., and L.A.G. have intellectual property related to B cell therapies for AAV NAb reduction.

References

    1. High K.A., Roncarolo M.G. Gene Therapy. N. Engl. J. Med. 2019;381:455–464. doi: 10.1056/NEJMra1706910. - DOI - PubMed
    1. Wang D., Tai P.W.L., Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019;18:358–378. doi: 10.1038/s41573-019-0012-9. - DOI - PMC - PubMed
    1. Wang J.H., Gessler D.J., Zhan W., Gallagher T.L., Gao G. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct. Target. Ther. 2024;9:78. doi: 10.1038/s41392-024-01780-w. - DOI - PMC - PubMed
    1. Mendell J.R., Al-Zaidy S.A., Rodino-Klapac L.R., Goodspeed K., Gray S.J., Kay C.N., Boye S.L., Boye S.E., George L.A., Salabarria S., et al. Current Clinical Applications of In Vivo Gene Therapy with AAVs. Mol. Ther. 2021;29:464–488. doi: 10.1016/j.ymthe.2020.12.007. - DOI - PMC - PubMed
    1. Kuzmin D.A., Shutova M.V., Johnston N.R., Smith O.P., Fedorin V.V., Kukushkin Y.S., van der Loo J.C.M., Johnstone E.C. The clinical landscape for AAV gene therapies. Nat. Rev. Drug Discov. 2021;20:173–174. doi: 10.1038/d41573-021-00017-7. - DOI - PubMed

MeSH terms

LinkOut - more resources