β-Lactoglobulin and sorghum phenolic compounds molecular binding: Interaction mechanism and thermal stability impact
- PMID: 40058253
- DOI: 10.1016/j.foodchem.2025.143632
β-Lactoglobulin and sorghum phenolic compounds molecular binding: Interaction mechanism and thermal stability impact
Abstract
The mechanism of molecular interaction between β-lactoglobulin (β-lg) and sorghum bran phenolic compounds from 4 genotypes was studied. Catechin (CA) and ferulic acid (FA) were used as model systems. Higher affinity for β-lg:FA interaction (Ksv ≈ 105 M-1) compared with β-lg:CA interaction (Ksv ≈ 104 M-1) was revealed, with different preferable binding sites identified through molecular docking. Nevertheless, regarding the molecular interaction between the proteins and the complex extracts of phenolic compounds, Ksv in the magnitude order of 104 M-1 were observed. Antioxidant capacity progressively increased after protein-phenolic interaction, indicating a potential synergistic effect. Concerning the thermal stability of the phenolic compounds, epimerization as the primary response of CA to thermal treatment (90 °C / 10 min) was identified, but the addition of β-lg exerted a protective effect against CA degradation (-7 % in β-lg:CA complexes); however, proteins were not able to protect complex phenolic matrices (e.g. sorghum extracts).
Keywords: Fluorescence quenching; HPLC-DAD-ESI-MS/MS; Molecular docking; Phenolic profile; Sorghum bicolor L.; Thermal treatment.
Copyright © 2025 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources