Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985 Jul;57(1):152-63.
doi: 10.1161/01.res.57.1.152.

Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains

Free article

Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains

L K Waldman et al. Circ Res. 1985 Jul.
Free article

Abstract

To examine transmural finite deformation in the wall of the canine left ventricle, closely spaced columns of lead beads were implanted at a single site on the left ventricular free wall. The three-dimensional coordinates of these myocardial markers were obtained with high-speed biplane cineradiography. Any four noncoplanar markers forming small tetrahedral volumes (less than or equal to 0.1 cc) were used to calculate finite normal and shear strains with respect to a cardiac coordinate system at end diastole. Due to the symmetry of the finite strain tensor, the algebraic eigenvalue problem could be solved to compute principal strains and the directions of the principal axes of deformation with respect to the reference coordinates. An examination of the principal strains in a number of tetrahedra in five animals indicates that deformation increases with depth beneath the epicardium. For example, the transmural variation of principal shortening strain averages -0.014 +/- 0.009 per 10% increment in thickness from epicardium to endocardium. Furthermore, shortening and thickening strains at midwall and deeper are too large (0.10 to 0.40) to be described accurately by infinitesimal theory. These strains are often accompanied by substantial in-plane and transverse shears which are not predicted by typical membrane or shell theories, indicating that these theories must be applied with caution when computing indices of regional ventricular performance. The directions of the principal axes of shortening vary substantially less than the fiber direction varies across the wall (20 degrees - 40 degrees compared with 100 degrees - 140 degrees for fiber direction), supporting the concept that there are substantial interactions between neighboring fibers in the left ventricular wall.

PubMed Disclaimer

Publication types

LinkOut - more resources